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eAbstra
tThis paper deals with the polyhedrization of dis
rete volumes. Theaim is to do a reversible transformation from a dis
rete volume to a Eu-
lidean polyhedron, i.e. su
h that the dis
retization of the Eu
lideanvolume is exa
tly the initial dis
rete volume. We propose a new poly-nomial algorithm to split the surfa
e of any dis
rete volume into pie
esof naive dis
rete planes with well-de�ned shape properties, and presenta study of the time 
omplexity as well as a study of the in
uen
e ofthe voxel tra
king order during the exe
ution of this algorithm.Keywords: dis
rete volumes, digital plane re
ognition, surfa
e, poly-hedrization.1 Introdu
tion3D dis
rete volumes are more and more used espe
ially in the medi
al areasin
e they result from MRI and s
anners. As 2D images are 
omposed ofsquares 
alled pixels, these 3D images are 
omposed of 
ubes 
alled voxels.This stru
ture indu
es many diÆ
ulties in the exploitation and study ofthese obje
ts: as ea
h 
ube is stored, the volume of data is very huge, whi
his a problem to get a 
uent intera
tive visualization; the fa
et stru
ture(voxels's fa
es) of the dis
rete obje
t indu
es many problems to get a ni
evisualization that is ne
essary for medi
ines, as no rendering nor texturealgorithm 
an be applied.The general idea to solve those problems is to transform dis
rete vol-umes into Eu
lidean polyhedra. Many resear
h a
tivities have already been�Corresponding author: sivignon�lis.inpg.fr, fax number: 0033476826256yfdupont�ligim.univ-lyon1.frz
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a
hieved to �nd solutions to this problem, using Eu
lidean geometry or dis-
rete geometry. To get a good visualization of dis
rete volumes, the methodthat is most used is the Mar
hing 
ubes method [1℄, whi
h 
onsiders lo
alvoxel 
on�gurations to repla
e them by small triangles. Even if this methodo�ers a good visualization, it does not provide a good data 
ompression(huge number of fa
ets) and is not reversible.Many other resear
h a
tivities have been done in this �eld, using 
om-pletely di�erent ideas. The �rst algorithms dealt with the 
onstru
tion ofthe 
onvex hull of the 
onsidered set of voxels. This study was mainly doneby Kim and Rosenfeld who published in [2℄ a �rst algorithm to 
hara
terizea pie
e of dis
rete plane by the 
onvex hull of the dis
rete surfa
e. Thisalgorithm was then improved by Kim and Stojmenovi�
 [3℄. This algorithmwas not reversible, i.e. the dis
retization of the Eu
lidean hull obtained isnot the dis
rete obje
t.The �rst reversible algorithm was proposed by Borianne and Fran�
on[4℄. In this paper, they expose two methods: one to do a polyhedrization,and another to do the reverse operation, i.e. dis
retization. For that, theyuse an approximation by the least-square method that make it marginal
ompared with entirely dis
rete methods.Another idea was then proposed by Debled [5℄ [6℄. She developed analgorithm to re
ognize re
tangular pie
es of naive planes. Then, she usesthis algorithm in order to de
ompose the digital surfa
e of symmetri
 obje
ts(with known symmetries) into pie
es of dis
rete planes. The polyhedrizationwas not 
omplete here but it was the �rst approa
h using dis
rete planere
ognition.In 1999, Papier [7℄ [8℄ presents an algorithm using the Fourier-Motskinalgorithm to re
ognize standard dis
rete planes on an obje
t surfa
e, ea
hpoint of the plane being a pointel (vertex of a voxel). The time 
omplex-ity of this algorithm is high be
ause of the Fourier-Motskin algorithm andmoreover, the polyhedrization done is not reversible.Finally, in 2000, Burguet and Malgouyres published [9℄ an approxima-tion algorithm using a 
urvature 
omputation to 
hoose some germ pointsand then 
al
ulate the skeleton of the dis
rete surfa
e without those germs(Voronoi diagram). The result is a Delaunay triangulation that approxi-mates and simpli�es the original obje
t.The aim of this paper is to present the �rst steps to a
hieve a totally dis-
rete and reversible polyhedrization. We use dis
rete geometry that seemsto �t best the stru
ture of the pro
essed obje
ts. Reversibility means thatfrom a dis
rete obje
t, we 
an get a Eu
lidean polyhedron whi
h digital-ization is exa
tly the former dis
rete volume. This property enables manyappli
ations and we give two of them here. First, this 
an lead to an eÆ-
ient data 
ompression des
ribing the volume by the set of all the fa
es ofthe Eu
lidean polyhedron: no loss of data and no loss of information in the
ompressed obje
t. After this transformation, we 
an apply morphologi
al2



operations on the re
onstru
ted Eu
lidean polyhedron and then retrieve thedis
rete volume obtained after these operations.In a �rst part, we give the basi
 de�nitions of dis
rete geometry. Then,we present in detail the naive plane re
ognition algorithm that we use inthe following, giving some improvements and new properties. In se
tion 4,after a short state of the art, we expose our splitting algorithm. Se
tion 5deals with the algorithm time 
omplexity. In the next se
tion, we proposea study of the voxel pro
essing order and its in
uen
e on the �nal surfa
ede
omposition. Before a few words of 
on
lusion, we �nally present someperforman
e and image results on generated and real volumes.2 Basi
 De�nitions and propertiesIn this �rst part, we fo
us in a few words on the basi
 obje
ts de�nitionsof dis
rete geometry. All the following de�nitions lie in a dis
rete 3D spa
e.This spa
e is de�ned as a unit 
ubi
 mesh 
entered on points having integer
oordinates. The verti
es of ea
h 
ell (
ube) of the mesh 
orrespond topoints with half-integer 
oordinates.A voxel or Z3 point or dis
rete point is assimilated with the unit 
losed
ubes of the mesh. Then, voxel 
oordinates are the 
oordinates of the 
or-responding 
ube 
enter. Fa
es, edges and verti
es of a voxel are respe
tively
alled surfels, linels and pointels.In Z3, three voxel neighborhoods (�gure 2) are 
lassi
ally used. Theyare de�ned with the two distan
es 
alled Manhattan distan
e, denoted d6and Chess board distan
e, denoted d26:d6(M;P ) = jxm � xpj+ jym � ypj+ jzm � zpjd26(M;P ) = max(jxm � xpj; jym � ypj; jzm � zpj)Two voxelsM and P are 6-neighbors (6-N) if and only if d6(M;P ) � 1.M and P are 26-neighbors (26-N) if and only if d26(M;P ) � 1. In otherwords, two points are 6-N if they have a 
ommon fa
e, 26-N if they havea 
ommon fa
e, a 
ommon edge or a 
ommon vertex. This point of viewsuggests another neighborhood for the 
ase of two voxels sharing a 
ommonfa
e or a 
ommon edge, 
alled 18-N (d6(M;P ) � 2).A 
lassi
al way to de�ne a dis
rete line or a dis
rete plane is to 
onsiderthe digitization of a Eu
lidean line or plane on a unit grid with a givendigitization s
heme. But, as in Eu
lidean spa
e, there exists arithmeti
alde�nitions of dis
rete planes and lines. Those de�nitions where given byReveill�es [10℄ and then generalized to hyperplanes by Andr�es [11℄.A digital plane (�gure 3) of normal ve
tor (a; b; 
), translation pa-rameter r and arithmeti
al thi
kness ! 2 N is de�ned as the set of points3



M(x; y; z) 2 Z3 satisfying the double inequality:0 � ax+ by + 
z + r < !where a; b; 
 are not all null and satisfy g
d(a; b; 
) = 1. A dis
rete planesu
h that ! = jaj+ jbj+ j
j is 
alled standard.A dis
rete plane su
h that ! = max(jaj; jbj; j
j) is 
alled naive. (see �gure3 for an example)The thi
kness parameter determines the 
onne
tivity of the plane. Infa
t, naive planes are the thinnest 
onne
ted planes without holes and there-fore they are very well adapted for obje
t surfa
e study. In the rest of thepaper, we will deal with naive planes denoted P (a; b; 
; r).Finally, naive dis
rete plane 
an be de
omposed into primitive elements
alled tri
ubes: the tri
ube at point (i; j) of the naive plane P is de�nedas the set f(x; y; z) 2 P j i � x � i+ 3; j � x � j + 3g.3 Re
ognition of a pie
e of dis
rete naive planeWe present in this part an algorithm proposed by Vittone and Chassery [12℄to re
ognize digital plane segments. Some new properties are also proved.3.1 Des
ription of the algorithmGiven a Eu
lidean plane P de�ned by ax+ by + 
z + r = 0, where 0 � a �b � 
 and 
 6= 0, the OBQ dis
retization(Obje
t Boundary Quantization)of P is the set of all points M(x; y; z) of the mesh on or \under" P . Forx; y 2 Z, this method 
onsists of rounding z to the lower integer value. Theresult of su
h a dis
retization is the naive plane with parameters (a; b; 
; r).In [13, 12℄, Vittone presents an algorithm that solves in polynomial timethe following problem (so 
alled re
ognition problem):Let S be a set of voxels 
ontaining the origin (0; 0; 0) and n other voxels(iq; jq; kq), q = 1; : : : n. What is the set �S of the parameters (�; �; 
) 2 R3with 0 � � � � < 1 and 0 � 
 � 1 su
h that all the voxels of S belong tothe OBQ dis
retization of P : �x+ �y + z + 
 = 0 ? Then, we look for theset �S de�ned by:�S = f(�; �; 
) 2 [0; 1[2�[0; 1℄; � � � j 8(x; y; z) 2 S 0 � �x+�y+z+
 < 1gLet us 
onsider the duality of the double inequality of the former formula.Indeed, let P be a Eu
lidean plane de�ned by z = �(�x + �y + 
). Thisequation represents all the points (x; y; z) belonging to P . Let us rewrite theequation as 
 = �(x� + y� + z). Then, in the dual spa
e (0; �; �; 
) (also
alled parameter spa
e), this equation represents all the planes 
ontainingthe point (x; y; z). In this spa
e, a plane (a; b; 
; r) is the point (a
 ; b
 ; r
 ) if
 = max(a; b; 
). 4



Sin
e ea
h voxel generates a double inequality, in the dual spa
e ea
hvoxel of S is represented by an half-open strip delimited by two parallelplanes. For a given voxel (x; y; z), this area represents the set of Eu
lideanplanes parameters whose OBQ dis
retization 
ontains the voxel (x; y; z). Fi-nally, �S is the interse
tion in the dual spa
e of n half-opened strips delimitedby two Eu
lidean planes P (iq; jq; kq) and P (iq; jq; kq � 1), q = 1; : : : n.This is the main point of the re
ognition algorithm: ea
h voxel 
on-straints the solution area in the dual spa
e with an half-opened strip. Theinterse
tion of those half-spa
es 
an be found step by step adding one voxelafter the other. At the end, �S 
an be a polyhedron, a polygon, a line segmentor empty. In the last 
ase, the voxels are not 
oplanar.We present here a sket
h of the �nal algorithm. LetM(x; y; z) be a voxeland S the set 
ontaining M and p other voxels with 
oordinates (x+ iq; y+jq; z + kq), q = 1; : : : p. The aim is to �nd out the set of the naive planes
ontaining all the p+1 voxels of S, M being the origin. The 
omputation ofthe half-spa
es interse
tion returns the solution area �S and the �nal solutionsare, after translation, the planes P (a; b; 
; r�(ax+by+
z)) su
h that (a
 ; b
 ; r
)is in �S.Sin
e 0 � � � � < 1 and 0 � 
 � 1, the initial solution area is delimitedby the proje
tions of the six verti
es ofB0 = f(0; 0; 0; 1); (0; 1; 0; 1); (1; 1; 0; 1); (0; 0; 1; 1); (0; 1; 1; 1); (1; 1; 1; 1)g(�gure 4) onto the dual spa
e. In the rest of this paper, Bq will stand for theset of the points in N4 su
h that their proje
tions in the parameter spa
eare the verti
es of the solution area for the �rst q voxels. Hen
e, �S is theproje
tion of translated Bp+1 in the parameter spa
e.Let us denote Lq(a; b; 
; r) = aiq + bjq + 
kq + r and L+q (a; b; 
; r) =Lq(a; b; 
; r) � 
. Let (a; b; 
; r) be the normal ve
tor of a plane P solutionafter step q. Then, at step q + 1, this plane is still a solution if and only ifLq+1(a; b; 
; r) and L+q+1(a; b; 
; r) have opposite signs, i.e. in the dual spa
e,the point 
orresponding to the plane P is between the two planes de�nedby the voxel (iq+1; jq+1; kq+1).The following algorithm takes as input a voxel V (iq; jq; kq) and the setBq�1 solution for the �rst q � 1 voxels, and 
omputes the set Bq of thesolution polyhedron verti
es after the addition of V .Fun
tion Add voxel(Bq�1,V )Initialization. Bq = ;.Lq(a; b; 
; r) = aiq + bjq + 
kq + r and L+q (a; b; 
; r) = Lq(a; b; 
; r) � 
.Main loop.(1) For all V1 belonging to Bq�1 do 5



(2) If Lq(V1) = 0 or L+q (V1) = 0 then put V1 in Bq(3) Else if Lq(V1) > 0 and L+q (V1) < 0 then put V1 in Bq(4) Else(5) For all V2 inBq�1, V2 6= V1 su
h that Lq(V1) and Lq(V2)or L+q (V1) and L+q (V2) have opposite signs(6) � Compute the interse
tion I of the line (V1V2)and the plane Lq(X) = 0 (or L+q (X) = 0)(7) � Put I in Bq(8) end for(9) end forResult. Return Bq.The result of this fun
tion is the set of the solution polyhedron verti
esafter the pro
essing of the q �rst voxels. Hen
e, to 
he
k if a set of voxels Sare 
oplanar, it is enough to 
all the fun
tion Add voxel for one voxel afterthe other using ea
h time the last Bq 
omputed. In the rest of this paper,we 
all re
ognition algorithm the algorithm that re
ognizes a pie
e of plane.3.2 Properties and improvementsThis polyhedron �S is the interse
tion of half open strips. Hen
e, althoughthe points that are linearly dependent with positive weights to the verti
esof �S are ne
essarily solutions, this algorithm does not pre
ise whether theverti
es, edges and fa
es of �S are solutions or not.Proposition 1 Let S = f(iq ; jq; kq); q = 1; : : : ; pg be a set of p voxels, andlet �S be the solution polyhedron obtained with the re
ognition algorithm. If�S is not empty, let N = fNi; i = 1 : : : mg be the set of the verti
es of �S.Then, Ni is a solution if and only if 8q; 1 � q � p; L+q (Ni) 6= 0.Let E be a point of the edge (Ni; Nj). If Ni or Nj is a solution, then Eis also a solution.Proof: Let Ni(a; b; 
; r) be a vertex of �S. Suppose that there exists avoxel (iq; jq; kq) su
h that L+q (Ni) = 0. This means that Ni belongs to theplane (iq; jq; kq � 1) in the dual spa
e. Sin
e this plane is the open limit ofthe solution area, Ni is not a solution. On the other hand, suppose thatNi is not a solution, and show that there exists a voxel (iq; jq; kq) su
hthat L+q (Ni) = 0. By 
onstru
tion, two kinds of non-solution points exist:those that are not in the solution polyhedron, and those that belong to anopen side of the polyhedron. As Ni is a non-solution vertex of the solutionpolyhedron, it belongs to a plane that is an open side of the polyhedron, i.e.a plane whose normal ve
tor is (iq; jq; kq � 1). Then, there exists (iq; jq; kq)su
h that aiq + bjq + 
(kq � 1) + r = 0, and then L+q (Ni) = 0.6



Let E be a point of the edge (Ni; Nj) with Ni solution. Suppose that Eis not a solution. Then, there exists a half open strip that does not 
ontainE. As E is on an edge of the polyhedron, E belongs to the open plane ofa strip. Either this plane 
ontains the edge (Ni; Nj) and then this leadsto a 
ontradi
tion, or this plane 
uts this edge in E, and then, one of thetwo verti
es Ni or Nj is outside the strip. If Ni is outside, then we get the
ontradi
tion. Otherwise, if Ni is solution, then Nj is not. As E is on theedge (Ni; Nj), Nj does not belong to the open plane, whi
h implies that Njis not a vertex of �S. Contradi
tion. 2Corollary 1 Let E be a point of a fa
e F of �S. Let Ni; i = 1; : : : n; n >= 2the set of verti
es of F . If at least one Ni is a solution and if E is not onan edge of the fa
e, then E is also a solution.Proof: For n = 2, see proposition 1. For n > 2, the demonstration isnearly the same. Suppose that E is not a solution. As E is on a fa
e ofthe polyhedron, E belongs to one of the open planes of the strips. If thisplane 
ontains the fa
e F , then we get the 
ontradi
tion as Ni belongs tothis fa
e. Otherwise, there exists an open plane 
ontaining E. As E is noton an edge and as �S is 
onvex, this plane 
uts the fa
e F in at least twoedge points. This plane splits the spa
e into two half-spa
es, one 
ontainingpoints that do not belong to �S . Therefore, at least one vertex of F will bein this half-spa
e, 
ontradi
tion. 2Now let us fo
us on the line (6) of the fun
tion Add voxel presented inse
tion 3.1. Many eÆ
ient algorithms exist to 
ompute the interse
tion ofa polyhedron and a plane (see for instan
e [14℄, 
hap.7). Those algorithmsreturn the set of verti
es of the polyhedron as rational numbers. But toget the plane normal ve
tors 
orresponding to the verti
es 
oordinates, wemust have those 
oordinates in fra
tional form. Instead of 
omputing thepolyhedron �rst and then transforming ea
h vertex 
oordinate, it is betterto 
ompute them dire
tly as fra
tions.In [13℄, that was done using a modi�ed version of Grabiner algorithm[15℄. This algorithm uses Farey series and their properties to 
ompute thenew verti
es v with a di
hotomy method. The time 
omplexity is thenO(log(n)) if v is between two verti
es v1 and v2 su
h that d(v1; v2) = n whered denote the Eu
lidean distan
e. We propose here to 
ompute dire
tly those
oordinates keeping at ea
h step of the 
omputation the value of numeratorsand denominators. This step 
an be done in O(1) time with the followingalgorithm.V1 and V2 are two verti
es of the 
urrent solution polyhedron and P is aplane in the dual spa
e. This algorithm will 
ompute the parameters of theEu
lidean plane whose representation in the dual spa
e is the interse
tionpoint between the line (V1; V2) and the plane P .7



fun
tion Plane line(V1,V2,P )Initialization. V1(a1; b1; 
1; r1), V2(a2; b2; 
2; r2), P : �i + �j + k + 
 = 0,in the dual spa
e (0; �; �; 
).Let p be the interse
tion point of the line (V1; V2) and the plane P .Computation.Compute N = �ia1
2 � jb1
2 � r1
2 � k
1
2.Compute D = i(a2
1 � a1
2) + j(b2
1 � b1
2) + (r2
1 � r1
2).Result. The three 
oordinates have a 
ommon denominator: pd = N�
1
2.The three numerators are pn = (N(a2
1 � a1
2) + a1
2D; N(b2
1 � b1
2) +b1
2D; N(r2
1 � r1
2) + r1
2D).It is easy to retrieve the 
oordinates of the 
orresponding plane with thede�nition of the dual spa
e: for instan
e, if j
j = max(jaj; jbj; j
j), the plane
oordinates are (N(a2
1�a1
2)+a1
2D; N(b2
1�b1
2)+b1
2D; pd; N(r2
1�r1
2) + r1
2D).To 
on
lude on this part, this re
ognition algorithm o�ers some prop-erties that are useful for the next step, i.e. applying this algorithm on adis
rete surfa
e:� it re
ognizes naive dis
rete plane: the minimal thi
kness of these planesimplies that the obje
t surfa
e is enough to do a re
ognition, we donot need interior voxels;� it is in
remental: the voxels 
an be added one by one;� for a given set of voxels, the adding order does not have an in
uen
eon the �nal result;� it returns the set of verti
es of the solution polyhedron: so, we havethe 
omplete set of the solution planes normal ve
tors.4 General algorithmRe
ognizing dis
rete planes is the �rst step of a most general goal: thepolyhedrization of a dis
rete obje
t. This se
tion des
ribes a new algorithmthat split the dis
rete surfa
e of an obje
t into naive plane pie
es. Wewill also see that this algorithm has features whi
h make it espe
ially welladapted to get a totally dis
rete and reversible polyhedrization.We 
onsider 26-
onne
ted obje
ts with a 6-
onne
ted ba
kground. Inthe rest of the paper, we 
all surfa
e the set of the surfels that belong8



simultaneously to an obje
t voxel and to a ba
kground voxel. In otherwords, the surfa
e is the set of visible surfels. As ea
h voxel has six fa
es,those six fa
es de�ne six dire
tions that we 
onsider symmetri
ally duringthe algorithm des
ription.Algorithm De
ompose-dis
rete-surfa
eInitialization. For ea
h obje
t voxel, lo
ate the surfa
e surfels, S.Initialize the number of planes 
pt to �1.Initialize the list To-pro
ess with the empty list.Let B be a set of verti
es of a solution polyhedron: B0, the initial set,depends on the 
urrent dire
tion.Main loop.(1) For ea
h obje
t dire
tion d(2) For ea
h obje
t voxel V(3) Let s0 be the surfel of V in the dire
tion d;(4) If s0 2 S and s0 has never been treated then(5) origin = s0;(6) 
pt = 
pt+ 1;(7) put s0 in To-pro
ess;(8) B = B0;(9) While To-pro
ess is not empty(10) 
hoose one surfel s in To-pro
ess;(11) Bsave = B;(12) For ea
h of the 8 neighbors sn of s(13) B = Add voxel(B,sn)(14) if B is not empty then(15) 
pt is a solution for s and its 8 neighbors;(16) among the 8 neighbors, put those whi
h have not beentreated yet for this plane into the list To-pro
ess;(17) else(18) If s = s0 then 
pt = 
pt� 1 and 
lear To-pro
ess;(19) B = Bsave;end whileend forend forResult. For ea
h surfel: a list of all the plane numbers it belongs to.For ea
h pie
e of plane: the set of all the solution polyhedron verti
es.In this algorithm, the solution polyhedron is represented by the set of itsverti
es denoted by B. Ea
h time the fun
tion Add voxel is 
alled, the set9



B is modi�ed. We save the value of B before the addition of the 8 neighborsof a given surfel s. So, if s is not a tri
ube 
enter, we 
an re
over the solutionpolyhedron as it was before the pro
essing of s's neighbors (lines (18) and(19)).During the exe
ution, for ea
h surfel we 
reate a list 
ontaining all theplane numbers to whi
h this surfel belongs. Moreover, at the end of ea
hpie
e of plane re
ognition, we keep in an appropriate stru
ture the 
oordi-nates of the solution polyhedron verti
es.Let us analyze the properties of this algorithm:� during the pro
essing of a surfel, either 8 fa
es are added to the 
urrentplane or zero: indeed, if a surfel is a tri
ube 
enter, then we add all ofthem to the 
urrent plane, otherwise, none of them are added (eventhose whi
h 
ould belong to the plane). This implies that every surfelof a re
ognized naive plane has a least 3 neighbors belonging to thisplane. Indeed, a fa
e that belongs to a pie
e of plane must have aneighbor that is a tri
ube 
enter. Hen
e, only two 
ases are possible(see �gure 5). As a 
onsequen
e, re
ognized regions have a \regularform";� a surfel 
an belong to many pie
es of planes: indeed, no restri
tions nor
hoi
es are done during the expansion of the planes. Then, naive planesare extended to their maximum under the 
onstraint given before.The se
ond property 
an be seen as an advantage or as a problem. In-deed, if we do not allow dis
rete plane 
overing, the limit between two planesis easy to handle. But we 
an get many very small pie
es of plane at the endof the algorithm and hen
e, allowing plane 
overing redu
es the in
uen
e ofthe seeds used for the pie
es of planes. Moreover, to get a reversible poly-hedrization, the border of a pie
e of plane should be a dis
rete line. Without
overing, we have no mean to 
ontrol the border of the pie
es of plane.5 Time ComplexityIn this se
tion, we give a polynomial bound on the algorithm time 
om-plexity. This study is split into two parts: �rst, the time 
omplexity of thefun
tion Add voxel presented in se
tion 3; then, the time 
omplexity ofthe algorithm De
ompose-dis
rete-surfa
e des
ribed in se
tion 4.5.1 Add voxel time 
omplexityThe �rst loop of this algorithm 
overs the elements of the set Bq. To boundthe 
ardinality of this set, we have to bound the number of verti
es of apolyhedron a

ording to its number of fa
es. This is a 
lassi
al result in
omputational geometry (see [14℄, 
hap.7 for instan
e) that we re
all here:10



Theorem 1 Let P be a 
onvex polyhedron with n fa
es. Then P has atmost 2n� 4 verti
es.In the algorithm, B0 is a polyhedron with 5 fa
es. As the addition of onevoxel is equivalent to the addition of two parallel planes in the dual spa
e,after step q, the solution polyhedron has at more 2(2q + 5) � 4 = 4q + 6verti
es. As a matter of fa
t, the �rst loop of the fun
tion Add voxel isdone in O(q) time where q is the number of voxels of the pie
e of plane.Nevertheless, in pra
ti
e, the number of verti
es of Bq is mu
h smaller thanq. In the loop, the �rst two tests 
an be done in 
onstant time. The se
ondloop does a new 
over of the set Bq and is 
arried out in O(q) time. For the
omputation of the plane/line interse
tion, we saw that we need here to keepsome parti
ular knowledge on the values found for the interse
tion point, andwe proposed in se
tion 3.2 an algorithm that solves this problem in 
onstanttime. To re
over the parameters of the solution planes, we will need afterthis algorithm a step to normalize the parameters (using Eu
lide's algorithmfor instan
e to 
ompute the g
d of the 3 denominators). This normalization
an be done either for ea
h Bq, or only at the end, for the verti
es of �S.For the fun
tion Add voxel, we �nally �nd a O(q2) time 
omplexity,where q is the number of voxels of the pie
e of plane.5.2 De
ompose-dis
rete-surfa
e time 
omplexityLet us analyze line by line how this algorithm runs. Let n be the numberof voxels whi
h have a surfel belonging to the obje
t surfa
e. As a voxelhas six fa
es, the �rst loop (line (1)) is done exa
tly 6 times. The se
ondloop (line (2)) is run n times as we have n surfa
e voxels. All the tests andinstru
tions done between line (3) and line (8) run in 
onstant time.The time 
omplexity of the loop line (9) depends on the maximum num-ber of elements in To-Pro
ess.Proposition 2 At step number q (after the q �rst voxels) the maximumnumber of elements in To-Pro
ess is 4q + 4.Proof: After the pro
essing of the �rst surfel, we put its 8 neighbors inTo-Pro
ess. Moreover, we have seen in se
tion 4 that any surfel belongingto a pie
e of plane has at least 3 neighbors in this plane. This means thatat any time during the algorithm, ea
h surfel of To-Pro
ess has at leasttwo neighbors in this list. During the treatment of one surfel of the list, wedelete this element from the list and we add its 8 neighbors. But, sin
e atleast 3 of them are already in the list, we add at most 5 for its neighbors.Finally, we add at most 5�1 = 4 surfels at ea
h step. Hen
e, at step numberq, this list has at most 8 + 4(q � 1) = 4q + 4 elements. �11



So, for the re
ognition of a naive plane with q voxels, this loop will bedone at most 4q + 4 times. The 
hoi
e in line (10) 
an be done in 
onstanttime, and in line (11), saving B needs a 
over of the set B, whi
h is donein O(q) time for a plane with q voxels. Moreover, for a naive plane with qvoxels, the fun
tion Add voxel runs in O(q2) time, and the loop line (12)in O(8q2) = O(q2) time. All the tests and instru
tions done between line(14) and (18) run in 
onstant time. The restitution of B line (19) is donein O(q) time as it needs a 
over of Bsave. Then, we have all the elements to
ompute the global time 
omplexity of this algorithm as a fun
tion of n, thenumber of voxels whi
h have a surfa
e surfel, and p, the size of the biggestre
ognized pie
e of plane. We get:6n� p� (2p+ 8p2)whi
h leads to a �nal time 
omplexity O(np3).6 Study on the voxel pro
essing orderDuring the exe
ution of the algorithmDe
ompose-dis
rete-surfa
e, many
hoi
es have to be made 
on
erning the order to pro
ess the voxels. Theyhave an in
uen
e on the �nal de
omposition we get: a given set of 
hoi
esindu
es a di�erent de
omposition. Therefore, a study is useful to know ifthere exists a strategy leading to a \better" de
omposition. In this se
-tion, we study this in
uen
e, 
omparing the results obtained with di�erentstrategies.In the algorithm, three main 
hoi
es are made for the tra
king order.Indeed, in line (1), (2), (10) and (12), no details are given 
on
erning thepro
essing order for these di�erent steps. But we 
an easily see that the
hoi
e made in line (10) does not in
uen
e the result: sin
e our approa
h issurfel based, the re
ognition done for one dire
tion has no in
uen
e on there
ognitions done for the others. Then, three 
hoi
es remain:� the origin of ea
h pie
e of plane (line (2));� the next voxel to pro
ess during the re
ognition of a pie
e of plane(line (10));� the tra
king order of the 8 neighbors of a given voxel whi
h determinesthe stru
ture of the list To-Pro
ess (line (16)).In this study, we give an insight in the in
uen
e of the last two ones.First, we 
an noti
e that the order we pro
ess the 8 neighbors of a givenvoxel determines the order in whi
h those neighbors are inserted into thelist To-Pro
ess. Hen
e, the planes growing shape depends on two inter-dependant 
hoi
es.In the following, we present various strategies de�ned from those 2
hoi
es. 12



6.1 Di�erent strategiesThe �rst strategy is also the simplest one to implement. In �gure 6, wepresent �rst the 8 neighbors tra
king and then the propagation s
heme de-pending on whi
h surfel we 
hoose in the list of surfels To-Pro
ess. Thenumbers on the surfels refer to the order in whi
h they are added in thelist To-Pro
ess. With this �rst order, taking the last element of the list atea
h step leads to a very linear propagation s
heme. This indu
es a maindire
tion for the planes propagation. In fa
t, for any neighborhood tra
king,
hoosing the last element of the list leads to a main dire
tion given by theposition of the last element pro
essed during the 8 neighborhood tra
king.If we take the �rst element of the list as a following surfel, we get the propa-gation drawn in �gure 6. With this tra
king, the left-down 
orner is alwaystreated before the other sides, and the expansion is not regular nor isotropi
.Figure 7 illustrates a se
ond strategy. The 8-neighbors tra
king is nowa 
lo
kwise tra
king around the pro
essed voxel (any other tra
king aroundthe voxel gives symmetri
al results). The propagation obtained with the
hoi
e of the �rst surfel of the list is more isotropi
 than the previous one,even if the left-down 
orner is still pro
essed �rst in an irregular way whenwe get further from the plane origin.The main problem with those two strategies is that it is diÆ
ult to handleexa
tly the propagation even 
lose to the origin.A third method is illustrated in �gure 8. This 8 neighbors tra
kingpro
esses the voxels that are 
loser to the origin of the pie
e of plane �rst:the four 4-neighbors are �rst pro
essed, and then the four 8-neighbors. As wesaw that 
hoosing the last element of the list indu
es linear propagations,we just show here the propagation obtained with the 
hoi
e of the �rstelement. We see that even after a big number of steps, the propagations
heme is always the same: the four dire
tions (\sides") are pro
essed oneafter the other in the 
lo
kwise dire
tion. During the pro
essing of one side,the surfels are pro
essed a

ording to their distan
e to the origin. After thepro
essing of the 4 sides, the 4 
orners are treated. So, the propagation isperfe
tly de�ned in this 
ase, and is isotropi
 as ea
h dire
tion is pro
essedin the same way as another, even if one dire
tion is pro
essed �rst.6.2 Comparison resultsIn the following, we give some results for the 
omparison of the 3 tra
kingorders presented previously. To do so, we use the following 
riterion andobje
ts: sin
e a sphere is a symmetri
 obje
t in all the dire
tions, it wouldbe ni
e to get pie
es of planes that have nearly the same size. Hen
e, for asphere, the standard deviation/average for the size of the re
ognized pie
esof pla
es should be as small as possible.In the rest of this se
tion, we denote order 1 (resp. 2, 3) the one whi
h13




orresponds to the �rst (resp. se
ond, third) strategy on the previous se
-tion, independently of the 
hoi
e of the next voxel to pro
ess.Figures 9 and 10 present the two 
omparisons we propose. The 
urvesdepi
ted are spline approximations of the dis
rete results.In the �rst 
omparison (�gure 9), ea
h diagram represents the 
urves forone given tra
king order, and ea
h 
urve is the result 
hoosing the �rst or thelast voxel of the list. For all the strategies, the general shape of the 
urvesis 
haoti
. This is due to the dis
rete nature of the data. Nevertheless,the 
urves have similar behaviors: for instan
e, all the 
urves have a lo
almaximum when the radius is 5 or 8. It is quite easy to see that on thosethree �rst graphs, the 
urve 
orresponding to the 
hoi
e of the last voxel ofthe list is globally worse than the one 
orresponding to the �rst voxel of thelist. This suggests that the more isotropi
 the growing shape is, the betterthe result is.The results of the se
ond 
omparison are depi
ted in �gure 10. In this
ase, the �rst voxel of the list is 
hosen and the 
omparison is done overthe three di�erent orders. This �gure shows that the three 
urves 
ross overkeeping very 
lose values for any sphere radius. Hen
e, we 
annot dedu
efrom this graph that one tra
king order is better than another one, anda

ording to the very similar values we obtain, this suggests that those threeorders have nearly the same behavior. Finally, it seems that the tra
kingorder 
hosen does not have a very important in
uen
e on the result qualityprovided that it does not lead to a linear growing shape.Nevertheless it would be interesting to see if the global behavior be
omesstable when the radius of the sphere in
reases up to huge values, i.e. ifone tra
king order be
omes better than the others, or if the 
urves always
ross whatever the radius is. The treatment of very huge obje
ts leads toimplementation problems: indeed, sin
e we work with integer fra
tions inthe dual spa
e, we qui
kly get some very long integers. The solution is touse a library to handle integers with in�nite pre
ision and this work is nowin progress.7 ResultsIn this se
tion, we present some results about speed performan
es and im-ages resulting of our algorithm.7.1 Performan
e resultsWe did some tests for performan
e results on a Linux OS with a 1.8GHzpro
essor. The algorithm is implemented in C++ with no parti
ular opti-mizations. The �gure 11(a) shows the results obtained for 
ubes of di�erentsizes. In this �gure, we uses logarithmi
 s
ales for the two axes. Hen
e, ifthe pro
essing time depends dire
tly on a power of the size of the obje
t,14



the graph is a straight line. Moreover we only 
onsider the time spent forthe re
ognition of the pie
es of planes, not in
luding the input/output anddisplay operations.As the tra
king order does not in
uen
e the result for a 
ube (the 6fa
es are always found), we 
hoose the tra
king order that minimizes thelists tra
king in the algorithm, i.e. the �rst order with the 
hoi
e of thelast element of the list To-Pro
ess. We 
an moreover noti
e that evenif 
hoosing the �rst element of the list To-Pro
ess indu
es one more listtra
king in the time 
omplexity 
omputation, in pra
ti
e, this 
hoi
e has noe�e
t on performan
e results.Using se
tion 5 results, we 
an evaluate the time 
omplexity for a 
ubeof side n: the number of surfa
e surfels is of O(n2) and the size of the biggestplane is of O(n2) too, whi
h leads to a O(n8) theoriti
al bound for the time
omplexity. We see in �gure 11 that the graph is really 
lose to a straightline. In fa
t, if we 
onsider the un
ertainties due to su
h measurements, thisresult approa
hes very well a straight line with slope 3:5. This means thatfor the 
ube, the algorithm runs in O(n3:5) if n is the side of the square,whi
h is quite better than the theoreti
al bound found in se
tion 5.We did the same job for a sphere, and the results are presented in �gure11(b). With this obje
t, it is harder to do a 
omparison with the theoriti
albound: indeed, it depends on the size of the biggest plane re
ognized, and itis hard to �nd a relation between the radius of the sphere and the size of thebiggest plane. Nevertheless, the number of surfa
e voxels is in O(n2) if n isthe radius of the sphere, and we 
an also suppose that the size of the biggestplane is a fra
tion of n2. All together, we �nd a theoriti
al time 
omplexityin O(n8). Finally, it is interesting to noti
e that the 
urve we obtain is,as for the 
ube, very 
lose to a straight line of slope 4:5. This means thatthe algorithm runs in O(n4:5) whi
h is better than the estimation of thetheoriti
al bound.7.2 Image resultsTo �nish, we give here some image results of this algorithm. For all theimages presented here (Figures 12 and 13), ea
h 
olor 
orresponds to onepie
e of plane. For the visualization, if one surfel belongs to many pie
es ofplanes, we display the 
olor of the pie
e of plane that was re
ognized �rst.Figure 12 presents some 
reated and simple obje
ts: one pyramid, a
ube, a 
ube rotated in the grid and a 
hamfer 
ube (a 
ube of whi
h onevertex has been 
ut by a plane). On the pyramid, we see that 4 planes havebeen re
ognized, for the 4 fa
es of the pyramid. All those planes are thesame by symmetry: many voxels belong to two or more planes, and thus,with the priority rules we de�ned above, the plane �rst re
ognized is biggerthan the others on the pi
ture. Our algorithm re
ognizes the six fa
es ofa 
ube for any rotation in the grid, and for a 
hamfer 
ube, it re
ognizes15



in addition the plane that 
uts a vertex of this 
ube. As for the pyramid,the priority rules hide a big part of the se
tionning plane: typi
ally in thisexample, as the slopes of this plane and the fa
e of the 
ube are 
lose, theoverlap between these planes is about 35 voxels.Figure 13 gives the results for real obje
ts: one image of a single hand'sbones; one image of a pie
e of vertebra with high resolution. A table of thesizes of the planes re
ognized on the vertebra is presented in appendix A.8 Con
lusion and future workIn this paper, we have presented a new polynomial algorithm in the num-ber of surfa
e voxels to de
ompose the surfa
e of any dis
rete volume intopie
es of digital naive planes. To do so, we used an in
remental naive planere
ognition algorithm and we have shown some properties on the dual spa
easso
iated to ea
h pie
e of plane.Using a 8-neighborhood voxels tra
king, this de
omposition algorithmforbids too long and narrow pie
es of planes, and we analyzed some shapeproperties of the re
ognized pie
es of planes. Then, we analyzed the globaltime 
omplexity of this algorithm �nding a polynomial bound depending onthe number of surfa
e voxels. A sharper analysis of this algorithm led us tostudy the in
uen
e of the di�erent voxels tra
king orders. In a last part, wemade some performan
e tests on 
ubes of in
reasing side. These tests haveshown that for the 
ube, pra
ti
al performan
es are mu
h better than thetheoreti
al time 
omplexity. The last images illustrated the position of there
ognized pie
es of plane for generated and real obje
ts.This work opens many future prospe
ts, both on theoriti
al and pra
ti
alaspe
ts. First, some pra
ti
al work 
an be done to improve performan
es:the use of a library that handles integers with arbitrary pre
ision will enableto run this algorithm on bigger volumes.On the theoreti
al side, it would be interesting to study more in detailsthe stru
ture of the dual spa
e for a pie
e of plane as it has been done in2D for dis
rete line segments [16℄.Finally, this paper presented the �rst step of a more global goal that
onsists of �nding a reversible polyhedrization of any dis
rete volume. Toget su
h a polyhedrization, we need to transform ea
h re
ognized pie
e ofplane into a dis
rete polygon, a de�nition of whi
h has been proposed in [17℄.This supposes that we 
an de�ne and pla
e all the edges and the verti
esbetween the found pie
es of plane.Referen
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A Table of the plane sizes for the vertebrap. n. size p. n. size p. n. size p. n. size0 59 1 24 2 12 3 244 32 5 21 6 31 7 1198 124 9 25 10 27 11 912 15 13 12 14 18 15 916 74 17 15 18 40 19 920 106 21 15 22 41 23 1824 12 25 16 26 15 27 1528 9 29 9 30 16 31 2332 20 33 15 34 9 35 1836 119 37 95 38 58 39 87Figure 1: Table of the sizes of the planes for the vertebra (
f Figure 13):p.n. means plane number.
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linel

pointel

surfel (a) (b) (
) (d)Figure 2: A voxel and the three 
lassi
al neighborhoods

(a) (b) (
)Figure 3: A dis
rete plane: 0 � 6x+13y+27z < ! with di�erent thi
knesses:(a) ! = 15 a thin plane with holes; (b) ! = 27 a naive plane; (
) ! = 46 astandard plane. A tri
ube is also depi
ted onto the naive plane.
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)Figure 9: Comparison for the 
hoi
e of the next voxel to pro
ess: (a) order1; (b) order 2; (
) order 3 22
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e results: (a) for the 
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(a) (b) (
)
(d)Figure 12: Simple obje
ts: (a) A pyramid with basis 10 and height 5; (b) A
ube of side 16; (
) A 
ube rotated in the grid; (d) A 
hamfer 
ube

(a) (b) (
)Figure 13: (a) A sphere of radius 14; (b) A hand image; (
) A small part ofa human vertebra 24


