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The shape of sedimentary particles is an important property, from which geographical hypotheses

related to abrasion, distance of transport, river behavior, etc. can be formulated. In this paper, we use

digital image analysis, especially discrete geometry, to automatically compute some shape parameters

such as roundness, i.e. a measure of how much the corners and edges of a particle have been worn away.

In contrast to previous work in which traditional digital images analysis techniques, such as Fourier

transform, are used, we opted for a discrete geometry approach that allowed us to implement Wadell’s

original index, which is known to be more accurate, but more time consuming to implement in the field.

Our implementation of Wadell’s original index is highly correlated (92%) with the roundness classes

of Krumbein’s chart, used as a ground-truth. In addition, we show that other geometrical parameters,

which are easier to compute, can be used to provide good approximations of roundness.

We also used our shape parameters to study a set of pebbles digital images taken from the Progo

basin river network (Indonesia). The results we obtained are in agreement with previous work and open

new possibilities for geomorphologists thanks to automatic computation.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The shape of sedimentary particles is an important property
from which geographical hypotheses related to abrasion, distance
of transport, river behavior, etc. can be formulated (e.g. Krumbein,
1941). The main shape features are form or sphericity (a sphere
similarity measure), roundness (a measure of how much the
corners and edges of a pebble have been worn away) and surface
texture (a measure of small-scale features) (Barrett, 1980;
Diepenbroek et al., 1992).

Roundness of a particle was initially defined by Wadell (1932).
This method of estimating roundness is infrequently used even
though it is known to be more accurate than other methods
(Pissart et al., 1998), because the required number of measure-
ments is time consuming. For each particle, the radius of
curvature of each corner has to be measured either on three
orthogonal planes or on the silhouette as suggested in the
pioneering paper of Wadell (1932). A corner is defined as a part
of the contour for which the radius of curvature is lower than the
ll rights reserved.
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radius of the largest inscribed circle. The ratio between the mean
radius of curvature of the corners and the radius of the largest
inscribed circle defines the roundness measure (Wadell, 1932)
(Fig. 1). No definition of curvature was given in the original paper.
In order to shorten the time required to estimate roundness,
Krumbein (1941) created a chart (Fig. 2). Krumbein’s chart shows
examples of pebbles for which the roundness of their silhouette
has been calculated using Wadell’s method and clusters them into
nine classes. Some field guidelines (Bunte and Abt, 2001)
recommend a visual estimate of pebble roundness based on the
chart. In order to shorten the measurement time while keeping a
certain objectivity, some authors have proposed indices that were
inspired by Wadell’s index, but easier to calculate (e.g. Cailleux,
1947). Pissart et al. (1998) found that the Cailleux and Krumbein
methods give similar results on average, with the Krumbein
method being much quicker.

Our objective is to reduce the subjectivity and time required
for the estimation of pebble roundness by providing an automatic
computation method for Wadells index. It is usually computed in
the maximum projection plane, ‘‘perhaps largely because of the
impracticality of measuring true 3D roundness’’, according to
Barrett (1980, p. 300). Even if roundness may be now computed in
3D with laser scanner (Hayakawa and Oguchi, 2005), the
procedure is time consuming (involving the removal of the
ation of pebble roundness using digital imagery and discrete
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particle, washing, and a 20þmin scan), an automatic computation
of Wadells index in the maximum projection plane is a good
trade-off between accuracy and time spent in the field. Although
several methods have been proposed that provide an estimate
that is linearly correlated with the values given by Krumbein’s
chart, a method that automatically calculates Wadell’s original
index has not yet been developed.

One of the roundness determination methods is based on the
Fourier transform. A well-known method has been proposed by
Diepenbroek et al. (1992). This method takes as input the polar
coordinates of a sample of 64 points of the particle boundary,
spaced at equal angular intervals. The Fourier transform is
computed from the distance to the centroid. The weighted sum
of the amplitudes of the first 24 coefficients of the Fourier
transform is a roundness estimate. To remove size information,
the coefficients are divided by the zeroth coefficient. In addition,
sphericity aspect is eliminated by subtracting the spectrum of the
best approximating ellipse from that spectrum. The measure
obtained was found to be linearly correlated (94%) with the values
of Krumbein’s chart. They then applied their method to address
fluvial and nearshore transport processes in Calabria, with the
measurement of around 20,000 gravels of different lithology.

An alternative method using mathematical morphology was
proposed by Drevin and Vincent (2002). The idea is to apply a
morphological opening on a particle silhouette. The morphologi-
cal opening consists of an erosion and a dilation with a same
Fig. 2. Krumbein’s char

Fig. 1. Roundness definition (Wadell, 1932). On one hand, radii r1–r3, being

smaller than radius R of the largest inscribed circle, define and measure corners.

On other hand, circle without label, being greater than radius R of the largest

inscribed circle, does not define nor measure a corner. As a consequence,

roundness is the average of r1–r3.

Please cite this article as: Roussillon, T., et al., Automatic comput
geometry. Computers and Geosciences (2009), doi:10.1016/j.cageo.2
structuring element, so that some shape features like ‘cape’ or
‘isthmus’ are removed without a contraction of the silhouette. The
ratio between the particle area before and after the morphological
opening is a roundness measure again linearly correlated (96%)
with the values of Krumbein’s chart, with a circular structuring
element of radius equal to 42% of the radius of the largest
inscribed circle.

The aim of this paper is to develop a method to automatically
calculate Wadell’s pioneering roundness index on the maximum
projection plane (Wadell, 1932), as well as the index of Drevin and
Vincent (2002). We will also develop new indices based on
particle geometry to study roundness with respect to form and
size, notably the ratio between perimeters of the silhouette and of
the best approximating ellipse, which has been positively
correlated to the values of Krumbein’s chart. As we choose to
focus on geometrical parameters, we do not implement para-
meters that use signal processing like the index proposed by
Diepenbroek et al. (1992). This work should help to accelerate the
sediment sampling process in river studies and allow the
development of geographical hypotheses related to sediment
particle roundness at the river network scale.

This paper is organised as follows. In Section 2, we describe the
shape parameters we implemented and give some details about
the implementation of Wadell’s index. In Section 3, we compare
different shape parameters using Krumbein’s chart. Experiments
are described in Section 4 with real images. Conclusions and
future research directions are presented in Section 5.
2. Computation of shape parameters using discrete geometry

In this section we consider a binary image of a pebble. The
image has been taken such that it coincides with the maximum
projection plane of the pebble (this is what we called the
silhouette of the particle in Fig. 3). From this silhouette we
compute one size parameter and some form and roundness
parameters.

2.1. Size parameter

Traditionally, the most frequently used size parameters are the
lengths of the three representative axes: a (major axis), b (medium
axis), c (minor axis). Using the rotating calipers algorithm
(Toussaint, 1983), a basic tool of computational geometry
t (Krumbein, 1941).

ation of pebble roundness using digital imagery and discrete
009.01.013
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Fig. 3. Silhouette of a particle shown in (a) and its boundary in (b). Polygonalisation of boundary is in (c).
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(Preparata and Shamos, 1985), we can easily estimate a and b from
the silhouette of a particle. The idea is to rotate two parallel lines
around the silhouette, such that the silhouette is enclosed by the
two lines and the two lines touch the silhouette: a is the
maximum distance between such parallel lines and b is
the minimum distance between such parallel lines. We take b as
a measure of the particle size, the so-called b-axis of the particles
(Bunte and Abt, 2001).
L

Fig. 4. Example of computation of radius of curvature at a pixel P. Radius of

curvature is radius of the circle (dotted line) passing through LPR.
2.2. Form parameters

Circularity, defined as the ratio between the perimeters of the
silhouette and of a disk of same area as the silhouette, is a basic
descriptor in digital image analysis. It can be seen as a two-
dimensional equivalent of sphericity. If PS and AS denote,
respectively, the perimeter and the area of the silhouette, the
formula is

circularity ¼
PS

2
ffiffiffiffiffiffiffiffi
ASp

p (1)

Before computing the perimeter and area of the silhouette, we
extracted the boundary of the silhouette by contour tracking and
we polygonalised the sequence of 8-connected pixels with a
digital straight segment recognition algorithm (Debled-Rennesson
and Réveillès, 1995) (Fig. 3). Next, the area and perimeter were
computed from the obtained polygon.

From a theoretical point of view, we used the arithmetical
definition of the digital straight line, which leads to an algorithm
that is linear in time with integer-only computations. In addition,
it is proven that if the image resolution is infinitely high, then the
perimeter and area estimations are infinitely close to the true
values (Klette and Zunic, 2000).

However, circularity is difficult to interpret because it con-
founds size, elongation, convexity and roundness information. We
propose to study these parameters independently and their
definitions are given hereafter:

Elongation is easy to compute and is equal to the ratio between
b and a

elongation ¼
b

a
(2)

Convexity is defined as the ratio between the area of the
silhouette ðASÞ and of the convex hull of the silhouette ðACHÞ. A
convex hull is defined as the minimal convex polygon covering of
an object. The convex hull has been thoroughly studied in
computational geometry (Preparata and Shamos, 1985) and is
Please cite this article as: Roussillon, T., et al., Automatic comput
geometry. Computers and Geosciences (2009), doi:10.1016/j.cageo.2
computed here with the algorithm of Melkman (1987)

convexity ¼
AS

ACH
(3)

2.3. Roundness parameters

Wadell defined his roundness index as follows:

rW ¼
1

k:R

Xk

i¼1

ri (4)

where ri is the radius of curvature that is smaller than or equal to
the radius of curvature R of the largest inscribed disk at a pixel on
the boundary of the pebble silhouette and k is the number of such
radii.

The implementation of rW followed three steps:
(1)
atio
009.
The radius of curvature at each pixel was estimated in a robust
way using an algorithm illustrated in Fig. 4 (Nguyen and
Debled-Rennesson, 2007).
First, the longest sequences of 8-connected pixels lying
between two parallel straight lines separated by a given
distance d to the left and to the right of P were identified. In
Fig. 4 and hereafter d ¼ 2. The end of the sequence of
8-connected pixels to the left (resp. to the right) of P is
n of pebble roundness using digital imagery and discrete
01.013
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Pl
ge
denoted by L (resp. R). Next, the radius of the circumcircle of
the triangle LPR was computed. This procedure was repeated
for each pixel.
Note that the above method is more accurate than the original
one because a continuum of radii is considered instead of a
class of concentric circles of fix radius (Barrett, 1980).
(2)
 The radius of the largest inscribed disk is calculated using the
distance transform of the silhouette. The distance transform is
a frequently used tool in discrete geometry that consists of
labelling each pixel of the silhouette by its distance to the
nearest pixel not belonging to the silhouette (Fig. 5). It was
computed using the efficient algorithm of Hirata (1996).
(3)
 rW was calculated using Eq. (4). Only the pixels with a radius
of curvature smaller or equal than the radius of curvature of
the largest inscribed disk were taken into account (Fig. 6).
For comparison, we also calculated the roundness measure
proposed by Drevin and Vincent (2002). This parameter is also
geometrical because the basic morphological operations are
related to the distance transform, the tool used to compute the
radius of the largest inscribed disk

rD ¼
AS�Cðo;rc Þ�Cðo;rc Þ

AS
(5)
5. Distance transform of a pebble silhouette. Each pixel is filled with a gray

l according to its distance to nearest pixel not belonging to silhouette (modulo

Radius of largest inscribed circle is 40.6.

6. Radius of curvature, which is computed for each pixel. The darker the pixel, the sm

s of largest inscribed circle are taken into account in roundness calculation. Roundn

s of largest inscribed circle (40.6), that is, 0.70.

ease cite this article as: Roussillon, T., et al., Automatic comput
ometry. Computers and Geosciences (2009), doi:10.1016/j.cageo.2
where AS�Cðo;rc Þ�Cðo;rc Þ denotes the area of the silhouette after a
morphological opening with a circular structuring element C of
center o and radius rc. As in Eqs. (1) and (3), AS denotes the area of
the silhouette. Operators � and � denote Minkowski’s addition
(dilatation or thresholding in the distance transform of the
complementary set of the silhouette) and Minkowski’s subtrac-
tion (erosion or thresholding in the distance transform of the
silhouette), respectively. The radius rc of the circular structuring
element was fixed to 75% of the radius R of the largest inscribed
disk. This is the percentage for which rD had the best correlation
with the values of Krumbein’s chart (Section 3).

As stated above, we chose to focus on geometrical parameters
and therefore we do not implement parameters based on signal
processing like the one proposed by Diepenbroek et al. (1992).

Finally, because it has been previously correlated to Wadell’s
index (Cottet, 2006), we also computed the ratio between the
perimeter of the sihouette ðPSÞ and of the best approximating
ellipse ðPeÞ as a last roundness measure as follows:

rP ¼
PS

Pe
(6)

Since circularity, which consists in comparing the silhouette
with a circle, includes both size, elongation and roundness
information, the idea is to compare the silhouette with an ellipse,
instead of a circle, to remove size and elongation aspects and
capture only the roundness.

2.4. Behavior of shape parameters with respect to resolution

In this section, the behavior of our shape parameters is studied
with respect to resolution. We used synthetic images, so that the
resolution was controlled and the true values of our shape
parameters were known.

We assumed an orthogonal grid with a uniform spacing
denoted by l between the grid points. We assumed that in a
digital image, pixels are grid points. The resolution of the image r

is defined as r ¼ 1=l. Geometrical shapes were digitised such that
pixels located inside and outside the shape were labelled object

and background, respectively. To increase the resolution r, we may
shrink the grid as well as leave the grid fixed and dilate the shape
(Klette and Zunic, 2000). Therefore, the shape parameters
introduced above were computed on digitised ellipses of increas-
ing size (Fig. 7). An ellipse was used instead of a polygon (or a
aller the radius of curvature. Only pixels whose radius of curvature is less than the

ess is the ratio between average of radius of curvature of retained pixels (28.5) and

ation of pebble roundness using digital imagery and discrete
009.01.013
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Table 1

Correlation between shape parameters values and Krumbein’s chart ones (b: size,

b=a: elongation, rD: Drevin’s roundness, rW: Wadell’s roundness, rP: ratio between

perimeters of the silhouette and of the best approximating ellipse).

Shape parameters Correlation coefficient

Individual values ðn ¼ 81Þ Mean values ðn ¼ 9Þ

b 0.065 0.153

b=a 0.057 0.199

rD 0.847 0.967

rW 0.919 0.992
rP 0.899 0.979

Circularity �0.844 �0.984

Convexity 0.895 0.972
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circle that is a specific case of the ellipse), because most of
parameters, which are based on digital straight segment
recognition (circularity, convexity, rP, rW), are more accurate
when the geometrical shape is a polygon and an ellipse thus
allowed us to test the worst-case scenario.

The curves of three of the five parameters (convexity, circularity,
rP) are quite smooth and converge very quickly toward the true
values (1, approximately 0.83 and 1, respectively). These para-
meters are computed thanks to very accurate perimeter and area
estimators. The curves of the two others (rD and rW) are less
smooth and converge more slowly to constant values as the size of
the digitised ellipses increases. The true values of rD and rW are
difficult to compute. However, a coarse estimation of ground-
truth (e.g. around 0.6 or 0.65 for rW) as well as the accuracy of the
tools used for the computation (an exact euclidean distance
transform and a robust curvature estimation for rW) allows
confidence that the computed values approach the true values.

The above analysis suggests that to remove the influence of the
resolution, a silhouette minimum size has to be used. To do so, a
threshold on the shape perimeter is set: beyond this threshold, the
error is considered acceptable. In Fig. 7, the error is less than 10% for
all shape parameters above a perimeter of 150 pixels. We conclude
that measures are accurate for all shape parameters, if the perimeter
of the extracted boundary of each pebble is above this value.
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2a

0 0.2 0.4 0.6 0.8 1 1.2

rK

’reg81.txt’
a*x+b
3. Correlations study using Krumbein’s chart

In Table 1, the correlation between the individual mean values
of the shape parameters and Krumbein’s chart roundness values is
given in columns 2 and 3, respectively.

While the new roundness parameters should preferably be
tested on real-world data rather than Krumbeins chart silhouettes
following Diepenbroek et al. (1992) and Drevin and Vincent
(2002), it is also useful to compare the estimates of Wadells index
from our algorithm to Krumbeins chart roundness values.

Our implementation of Wadell’s index is the shape parameter
that provides the best results with a linear correlation of 92%. This
is reassuring since Krumbein (1941) used the method proposed by
Wadell (1932) to divide his standard profiles into nine classes
having the same roundness value (Section 1). Table 1 also shows
that the form parameters of circularity, convexity and rP are also
linearly correlated with Krumbein roundness values. However, the
correlation coefficients found are lower than the values given in
200
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Form and roundness of digital ellipses of increasing size

rP
rD
rW
circ
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0.8

1.0

1.2

400 600 800 1000

Fig. 7. Shape parameters introduced in Section 2 (circ: circularity, conv: convexity,

rD: Drevin’s roundness, rW: Wadell’s roundness, rP: ratio between perimeters of

sihouette and of best approximating ellipse) over perimeter of digital ellipses. A

digital ellipse is the set of pixels, center of which is located inside a euclidean

ellipse. Elongation of digital ellipses is fixed and equals 1/2, whereas perimeter

ranges from 10 to 1000.

Please cite this article as: Roussillon, T., et al., Automatic comput
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the literature (Section 1). For instance, our implementation of
Drevin’s parameter provides a linear correlation of 85% compared
to 96% in Drevin and Vincent (2002). The discrepancy may be
related to the differences of implementation (our distance trans-
form is not an approximation but is exact) and of quality of the
input image (quality of Krumbein’s chart, acquisition process,
resolution, and so on).

In Fig. 8, rW is plotted against the Krumbein roundness classes
(rK). The slope of the least square regression line is greater than 2,
whereas its y-intercept is around of �0:7, which conflicts with the
b

rW

 0

 0.2

 0.4

 0.6

 0.8

 1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

rK

rW

’reg9.txt’
a*x+b

Fig. 8. Correlation between rW and Krumbein roundness classes (rK) computed on

individual values in (a) (each cross depicts a silhouette of Krumbein’s chart) and on

mean values in (b) (nine crosses depict the nine roundness classes of Krumbein’s

chart).

ation of pebble roundness using digital imagery and discrete
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expected slope of 1 and y-intercept of 0. Intraclass variance is
higher than expected whereas interclass variance is lower than
expected. The source of this variance is the lack of corner and
curvature definitions in the original paper of Wadell (1932)
(Section 1). This methodologic gap could also explain the high
inter-observer variability of Cailleux roundness index noticed in
Pissart et al. (1998).
4. Assessment of the longitudinal pattern of particle abrasion

We used our shape parameters in order to study real pebbles
from digital images, collected in the bed of the Progo, an
Indonesian river located on Java Island near Yogyakarta. The river
is 135 km long, has a catchment of 2400 km2 and drains several
volcanos, such as the Merapi, still active on the east side (2900 m
in elevation) and also the Sumbing and the Sundoro on the west
side (3200 and 3100 m in elevation, respectively). The source of
SUMBING

SUNDORO

INDIAN
OCEAN

k
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km 98

km
km

km 67

km 62

km 56

km 71-72
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km 21
km 20
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km 5
km 2

km 0

2

1

1
2
3

Tributaries (in text) 
Kali Galeh
Kali Elo
Kali Pabelan

Fig. 9. Catchment of Progo River, Java Island, Indonesia. Note the structure of hydrog

located along the main stem from Sundoro volcano to Indian Ocean and their distance

Please cite this article as: Roussillon, T., et al., Automatic comput
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the river is on the northern side of Mount Sundoro at 2500 m in
elevation (Fig. 9). Two thousand five hundred pebbles of andesic
were randomly sampled in the bed, with 2–5 photos being taken
on 25 stations located at various distances from the source (in
average every 5 km). We analysed an average of 105 pebbles per
station ðmin ¼ 73;max ¼ 154Þ. Digitised pebble boundaries
varied between 150 and 620 pixels (mean: 330� 70 pixels).

In a first step we detected pebbles with clustering methods,
transforming the original color image into a binary image as
shown in Fig. 10. In a second step, we extracted the boundaries
from pebbles silhouettes to compute the shape parameters
described in Section 2. For each sample of pebbles (around 100
pebbles per sample), characterised by its distance from the source,
we computed the average value of each shape parameter and their
confidence level at a ¼ 0:05.

To compare the stations along the river, we selected similar
size classes, from very coarse gravels to small pebbles (Bunte and
Abt, 2001). The 10th and 90th percentiles of the samples are,
MERAPI

m 131

km 125

km 118

km 84

 80
 75

 83

m 40

 35

 32

3

Java Island

raphic network that is strongly controlled by volcanoes. Twenty-five stations are

s to the source (in km) are indicated.

ation of pebble roundness using digital imagery and discrete
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Fig. 10. An image of sample pebbles with boundaries extracted in white (a). Extraction is performed by contour tracking in binary image (b). Last is computed with

clustering methods applied to the original color image (c).
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respectively, 51 and 87 mm in b-axis. ANOVA tests to evaluate the
independence of average b-axis values showed that stations are
not statistically different at a ¼ 0:05, except stations located 56
and 84 km which are significantly coarser particles than the
others.

Fig. 11 depicts the longitudinal pattern of each parameter along
the river course. The different parameters do not show a well-
structured trend from the mouth to the ocean, which
demonstrates the complex origin of the particles located in the
main stem. The clearest longitudinal trend was obtained by the
convexity ðr2 ¼ 0:035Þ. While each parameter has a unique
pattern, rP and circularity are highly correlated (the coefficient of
determination r2 equals �0:928) as are convexity and circularity

ðr2 ¼ �0:899Þ. rW is the parameter that is the most least
correlated with the others. The best correlation is observed for
rDðr2 ¼ 0:76Þ and the coefficient of determination is less than 0.63
for the three others. A similar general pattern can be nevertheless
observed from most of the parameters:
(1)
Pl
ge
Angular particles are preferentially observed in the upstream
section with a clear trend in roundness development from 0 to
20 km for rP, rD, convexity and circularity, and until 50 km for
rW. Therefore, the least round particles are generally observed
at the source station (rW, rD, circularity, convexity and rP

parameters).

(2)
 For all parameters, a significant decrease in roundness is also

observed in the middle of the section (60–80 km).

(3)
 Downstream of 80 km, all of the parameters exhibit a

significant increase in roundness until 100 km but then, they
ease cite this article as: Roussillon, T., et al., Automatic computatio
ometry. Computers and Geosciences (2009), doi:10.1016/j.cageo.2009.
are fairly constant until 130 km. With the exception of rW, the
roundness estimates are here similar or slightly higher
(convexity and rP) than those observed between 25 and
50 km. The most rounded particles are observed at the
downstream station or close to it (rP, circularity, convexity).
Downstream, rW does not readjust to the disruption that
occurs in the middle section and does not reach the highest
values until around 50–55 km.
From a thematic point of view, a nice trend in roundness is
observed in the upstream part of the catchment. This trend is clear
because no main tributary providing less rounded particles
disrupts the abrasion process. The delivery of the Kali Galeh at
21 km is the only perturbance detected by some of the parameters
but it does not counteract the trend. It is then possible to fit a law
for predicting roundness process in such an andesitic environ-
ment using rW ðrW ¼ 0:002 kmþ 0:69; r2 ¼ 0:87Þ or rP parameter
ðlogðrPÞ ¼ 0:009 logðkmÞ þ 0:69; r2 ¼ 0:90Þ. These results also un-
derline that such parameters are powerful enough to determine a
roundness trend over long distances (e.g. 20–50 km) whereas
previous work had indicated that roundness only significantly
affected particles near the source (the first km) after which it was
constant in a downstream direction (Pissart et al., 1998, for
example). The parameters are also robust enough to highlight the
major disruption in the roundness trends due to sediment
delivery in the middle section from the active Merapi volcano
located on the east side. This area is a major source of angular
material that disrupt the longitudinal trend. The distance from the
peak of Merapi to the main stem is only 25–30 km. It is then
n of pebble roundness using digital imagery and discrete
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interesting to see that the rW and rD values reached in this section
(60–80 km) are then very similar to those observed at 25–30 km of
the main stem, which may indicate that the abrasion process on
the Merapi slopes is similar to that observed on the Sandoro,
which is a much older volcano. The decrease in roundness already
occurs by the 62 and 67 km stations, which is before the
confluence with the Kali Elo and Kali Pabelan that drain the
Merapi. This indicates that the delivery is not only linked to the
river network itself but also from inherited material provided by
the Merapi, stored in the alluvial corridor and delivered by bank
erosion. The trends observed downstream the area influenced by
the Merapi are more difficult to interpret because the different
indicators have contrasting patterns. This raises the possibility of
using the different parameters in combination in order to
characterise the abrasion process over a long continuum and the
possible substitution of macro-scale for micro-scale shape
Please cite this article as: Roussillon, T., et al., Automatic comput
geometry. Computers and Geosciences (2009), doi:10.1016/j.cageo.2
changes as the particle abrades over distances longer than a few
kilometers. In the downstream context of the Progo basin, some
parameters, mainly circularity and convexity, may be more
powerful for characterising roundness trend when particle
corners are already smoothed. We may then hypothesise that
rW would be a better discriminant parameter of roundness
upstream in a context of angular particles whereas rP, convexity

and circularity would be more powerful downstream when the
particle corners are already smoothed and the abrasion affects the
shape itself.
5. Conclusion and perspectives

These new computer developments are a powerful tool to better
understand in field abrasion processes. The automatic imagery
ation of pebble roundness using digital imagery and discrete
009.01.013
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procedure allows us to replace the easy-to-collect indices such as
Krumbein visual classes and the Cailleux index with the more precise
roundness parameter, rW. From this preliminary field analysis, it is
clear that the implementation of the rW parameter is useful because,
unlike other parameters that are more sensitive to the particle shape,
it quantifies the corner shapes of particles. By providing both corner
and shape parameters, the developments allow us to study the
abrasion process over a long spatial continuum. We can expect that
rW is the most robust parameter closer to the source as it is based on
all the corners and describes the corner abrasion, whereas rP,
convexity or circularity provide indications at a macro-scale of abrasion
effects on the particle shape. The field example has been based on
average values, but a multivariate analysis is a challenging issue that
could better explore the variability of roundness parameters observed
at each of the stations and its evolution downstream.

It has also been shown that the resolution may affect the
quality of the results but that the parameters are fairly robust and
allow the comparison of pebbles of various sizes from the photos
of different resolutions. Threshold values in terms of resolution
(e.g., number of pixels per pebble perimeter) are provided to
correctly specify the field collection requirements in terms of
photo resolution and minimum particle size.

In the future, other indices such as the roundness of the
sharpest corner, which reflects the most recent transport condi-
tions (Barrett, 1980), could be studied instead of the average
roundness of particle corners. Moreover, as Wadells index has
been implemented with a continuum of radii of curvatures, the
available amount of quantitative information is greater than that
provided by the visual analysis of Krumbeins chart. Different
measurements such as the roundness of the sharpest corners, the
average and the standard deviation of the roundness of the
corners could be used to better evaluate differences in geogra-
phical responses.

In order to check the hypothesis according to which the most
outstanding corners of particles are more likely to be abraded
than others, it would be interesting to investigate the longitudinal
pattern of the roundness measure of individual corners (instead of
whole particles) along the river course. This could help to
introduce other indices where the corners are weighted depend-
ing on their position on the particle outline. This kind of index
should be more clearly representative of abrasion processes
during transport than our implementation of Wadell’s index.

For testing the computer programs, we worked with a
homogeneous lithology. The identification and analysis of multi-
ple lithologies is also a challenging issue for which it may be
possible to implement computer programs. In order to develop
such approaches, a clear understanding of sediment budgeting
and sediment source locations is needed before exploring the
effect of lithology on particle changes downstream in experi-
mental field conditions.
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