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ABSTRACT

In many applications, separable algorithms have demonstrated their efficiency to perform high per-
formance volumetric processing of shape, such as distance transformation or medial axis extraction.
In the literature, several authors have discussed about conditions on the metric to be considered in
a separable approach. In this article, we present generic separable algorithms to efficiently compute
Voronoi maps and distance transformations for a large class of metrics. Focusing on path-based norms
(chamfer masks, neighborhood sequences), we propose efficient algorithms to compute such volumet-
ric transformation in dimension n. We describe a new O(n ·Nn · logN ·(n+ log f )) algorithm for shapes
in a Nn domain for chamfer norms with a rational ball of f facets (compared to O( f b

n
2 c ·Nn) with pre-

vious approaches). Last we further investigate a more elaborate algorithm with the same worst-case
complexity, but reaching a complexity of O(n ·Nn · log f · (n+ log f )) experimentally, under assump-
tion of regularity distribution of the mask vectors.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Volumetric analysis of digital shapes is crucial in many ge-
ometry processing applications, for instance to measure dis-
tances between two points in Zn, or to measure the width of a
shape or the proximity between two shapes. Since early works
on digital geometry, distance transformation has been widely
investigated (e.g. Rosenfeld and Pfaltz (1968)). Given a fi-
nite input shape X ⊂Zn, the distance transformation labels each
point in X with the distance to its closest point in Zn \X . Label-
ing each point by the closest background point leads to Voronoi
maps (e.g. the restriction to Zn of Voronoi diagrams from com-
putational geometry (de Berg et al., 2000)). Distance transfor-
mation (or distance field) is a key tool in many applications
such as shape modeling, shape matching, geometry processing,
motion planing, object tracking. . . (see ? or ? for surveys of
techniques and applications). In this article, we propose a theo-
retical analysis to speed up the distance transformation compu-
tation for a large class of metrics, allowing efficient and parallel
implementations.
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As the distance transform is parametrized by a distance func-
tion, many authors have addressed this distance transforma-
tion problem with trade-offs between algorithmic performances
and the accuracy of the digital distance function with respect
to the Euclidean one. Hence, authors have considered: dis-
tances based on chamfer masks (Rosenfeld and Pfaltz, 1968;
Borgefors, 1986; Fouard and Malandain, 2005) or sequences of
chamfer masks (Rosenfeld and Pfaltz, 1966; Mukherjee et al.,
2000; Strand, 2008; Normand et al., 2013a); vector displace-
ment based Euclidean distance (Danielsson, 1980; Ragnemalm,
1993); Voronoi diagram based Euclidean distance (Breu et al.,
1995; Maurer et al., 2003) or square of the Euclidean distance
(Hirata, 1996; Meijster et al., 2000). For the Euclidean met-
ric, separable volumetric computations have demonstrated to
be very efficient with the design of optimal O(n ·Nn) time algo-
rithms for shapes in [1,N]n domains, optimal multithread/GPU
implementation or extensions to toric domains (please refer to
Coeurjolly (2012) for a discussion).

Path-based approaches (e.g. chamfer mask or –weighted–
neighborhood sequences) approximate the Euclidean distance
as the length of shortest paths defined from sequences of dis-
placement vectors on the grid (from a finite set of possible
moves). Aside distance information, path-based approaches
provide an explicit notion of discrete path that is not accessible
for the Euclidean norm. Furthermore, the discrete and com-
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binatorial nature of the distance function has been used to de-
fine efficient algorithms to extract discrete medial axis (Borge-
fors and Nyström, 1997; Remy and Thiel, 2002; Saha et al.,
2016) as local maxima of the distance map. Normand et al.
(2013b, 2014) further exploits the combinatorial structure of
path-based distances to compute distance transformation in on-
the-fly streaming context. In terms of distance transform com-
putation, two main techniques exist. The first one considers a
weighted graph formulation of the problem and Dijkstra-like
algorithms on weighted graphs to compute distances. If m de-
notes the size of the chamfer mask, computational cost could be
in O(m ·Nn) using a cyclic bucket data structure as suggested
by Verwer et al. (1989). Another approach consists in a raster
scan of the domain: first the chamfer mask is decomposed into
disjoint sub-masks; then the domain grid points are scanned
in a given order (consistent with the sub-mask construction)
and a local computation is performed before being propagated
(Rosenfeld and Pfaltz, 1966; Borgefors, 1986). Scanning the
domain several times (one per sub-mask) leads to the distance
transformation values. Again, we end up with a O(m ·Nn) com-
putational cost. Besides specific applications which use the
anisotropic nature of the chamfer mask, rotational dependency
is usually enforced by increasing the mask size m (its number of
vectors, see below) leading to expensive computational costs.

Contributions The goal of this work is to demonstrate that
the linear factor in the mask size can be lowered down to a log-
arithmic one in any dimension for path-based metrics. This is
achieved by first detailing and analyzing the separable distance
transformation algorithm and briefly recalling the preliminary
analysis of Coeurjolly (2014) for the 2D case, before extend-
ing it to higher dimensional distance transformation problems.
More precisely, we describe efficient and parallel algorithms
in arbitrary dimension n to compute error-free distance trans-
formation and Voronoi map for chamfer norms and other path-
based metrics. Overall computational costs are summarized in
Table 1 (see 3.1 for the predicate definitions).

The article is organized as follows: First, we recall basic def-
initions and properties of path-based norms (Section 2). In Sec-
tion 3 we clarify the separable n-dimensional Voronoi map ex-
traction. Section 4 is a short discussion about the complexity
of this algorithm for Lp metrics. Then Section 5 is dedicated to
the design of a fast implementation of the separable algorithm
for path-based metrics. In Section 6, we present and analyse the
proposed n−dimensional algorithm for path-based metrics.

2. Preliminaries

2.1. Metric space and distance transformation

A metric space (E,F,d) is a set E together with a metric d :
E×E→F on the set. When E is equal to Zn and d is an integer-
valued metric, also called digital metric, i.e. d : Zn×Zn→ Z,
we say that (Zn,Z,d) is a digital metric space. A digital shape
is a finite subset of Zn.

Definition 1 (Voronoi Map and Distance Transformation)
For a digital shape X ⊂ Zn, the Voronoi map VX associated
with a digital metric space (Zn,Z,d) is the map X → P(Zn\X)

such that VX (a) = argminb∈Zn\X{d(a,b)}. The distance trans-
formation DTX is a map X → Z such that DTX (a) = d(a,b) for
b ∈Vx(a).

The Voronoi map VX corresponds to the intersection between
the continuous Voronoi diagram for the metric d of the pointset
Zn \X and the lattice Zn. Note that VX (a) may contain several
equidistant points to a in Zn \X . In the following, we consider a
restricted Voronoi map, denoted ΠX , such that ΠX (a) = b with
b ∈ VX (a) choosen arbitrarily. ΠX are not unique but provide
the same distance map DTX . In the following, we focus on the
restricted Voronoi map computation and we may omit the word
restricted for the sake of clarity. Interested readers may refer to
(Couprie et al., 2007; Hesselink, 2007) for separable algorithms
to compute the complete Voronoi map of Definition 1.

Defining digital metrics spaces, notably in the context of dig-
ital image processing, has been the object of many works for the
past fourty years. Note that (weighted, with wi ≥ 0) Lp metrics

dLp(a,b) =

(
n

∑
k=1

wk|ak−bk|p
) 1

p

, (1)

define metric spaces (Zn,R,dLp) which are not digital. How-
ever, rounding up the distance function, (Zn,Z,ddLpe) is a dig-
ital metric space (Klette and Rosenfeld, 2004). However, it is
not precise enough in many situations, and other approaches
have been designed. Among them, the family of path-based
metrics (chamfer norms, -weighted- neighbourhood sequences)
aim at defining digital metrics induced by norms. In the follow-
ing and for the sake of simplicity, we focus on chamfer norms
but similar results can be obtained for more generic path-based
metrics such as neighborhood sequences. Elements to support
this claim are provided further in the following section.

2.2. Chamfer norms
Definition 2 (Chamfer Mask) A weighted vector is a pair
(~v,w) with ~v ∈ Zn and w ∈ N\{0}. A chamfer mask M is a
central-symmetric set of weighted vectors with no null vectors
and containing at least a basis of Zn.

In most situations, vectors of a chamfer mask exhibit axial
symmetries. As examples, see Figure 1(a) and (c), where a
subset of vectors (together with their weights) defining chamfer
masks by symmetries (called generators) are depicted.

From a chamfer mask, we can define a path between two
points a and b as a sequence of k points {ci} such that c0 = a,
ck−1 = b and ~cici+1 =~vi ∈M for i ∈ {0 . . .k− 2}. The length
of this path is thus the sum of all weights associated with the
vectors ~vi (i.e. ∑wi). As M contains a basis of Zn, such path
between a and b always exists and we can define the cham-
fer distance between two points a and b in Zn as the length of
the shortest path between a and b. Since weights are positive
integers (see Def. 2), distance values are scaled by the weight
of the first vector ((1,0 . . . ,0)T by convention). Hence, using
masks defined in Fig. 1, 1

3 · dM3−4(a,b) and 1
5 · dM5−7−11(a,b)

are approximations of dL2(a,b).
For all positive weights, a chamfer mask defines a metric. In

many shape processing applications, we usually consider a sub-
set of chamfer masks, the chamfer norms, with weights such
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Table 1. Computational cost summary for separable Voronoi map computation on Nn domains (m being the size of the chamfer norm and f the number of
row in a H-representation of the mask, see below).

Metric CLOSEST HIDDENBY Sep. Voronoi Map Reference
L2 O(n) O(n) Θ(n ·Nn) Hirata (1996)
L∞ O(n) O(n) Θ(n ·Nn) Meijster et al. (2000)
L1 O(n) O(n) Θ(n ·Nn) Meijster et al. (2000)

Lp (exact pred.) O(n · log p) O(n · log p · logN) O(n2 ·Nn · log p · logN) Lemma 1
Lp (inexact pred.) O(n) O(n · logN) O(n2 ·Nn · logN) Lemma 1
2D Chamfer norm O(logm) O(log2 m) O(log2 m ·N2) Coeurjolly (2014)

2D Neig. seq. norm O(logm) O(log2 m) O(log2 m ·N2) Normand et al. (2013a) with
Coeurjolly (2014)

nD Chamfer norm O(n+ log f ) O((n+ log f ) · logN) O(n ·Nn · logN · (n+ log f )) Lemma 4

that the induced metrics have convex unit balls, and thus lead-
ing to homogeneous distance functions. Chamfer norms can be
characterized by a set of linear constraints on the mask weights
Borgefors (1986); Strand (2008). In the following, we define
the size of a chamfer norm simply by the number of vectors of
its associated chamfer mask.

Many authors have proposed algorithmic and/or analytic ap-
proaches to construct chamfer norms approximating the Eu-
clidean metric. Following Thiel (2001) and Fouard and Ma-
landain (2005), we briefly recall here the classical construction
of chamfer norms from Farey set since it will be the base of the
study proposed in Section 6.

The Farey sequenceF n
m of dimension n and order m is de-

fined as follows :F n
m = {( x2

x1
, . . . , xn

x1
),gcdi∈1..n(xi)= 1,0≤ xn≤

xn−1 ≤ ·· · ≤ x1 ≤ m}. Then a Farey sequenceF n
m is in bijec-

tion with all the points (x1, . . . ,xn) in Zn, 0≤ xn ≤ ·· · ≤ x1 ≤m
visible from the origin1. The vectors ~vk of a chamfer norm in
dimension n can be defined using a subset of a particularF n

m:
the weights wk are set so that the rational ball BR (see Definition
3 below) is convex. By construction, such chamfer masks have
axis symmetric unit balls and thus define chamfer norms.

2.3. Distance computation for chamfer norms
To evaluate distances between two digital points for a given

chamfer norm, direct formulations have been proposed with a
simple geometrical interpretation (Thiel, 2001; Normand and
Évenou, 2009), using the so-called rational ball.
Definition 3 (Rational ball, minimal H-representation)
Given a Chamfer norm M, the rational ball associated with
M is the polytope

BR = conv
{
~vk

wk
; (~vk,wk) ∈M

}
. (2)

where conv denotes the convex hull of a set of points.

Rational balls for some 2D and 3D chamfer norms are illus-
trated in Figure 1. As any convex polytope, the rational ball BR
can also be described as the intersection of f linear constraints

1A point p ∈ Zn is visible from the origin in Zn if there is no point of Zn on
(Op) between O and p.

in dimension n, f being the number of (n− 1)−facets of BR.
This is the H-representation of the polytope which can be writ-
ten in a matrix form:

BR =

{
x ∈ Rn; x =

m

∑
k=1

αk

(
~vk

wk

)
, αk ≥ 0 ,

m

∑
1

αk = 1

}
= {x ∈ Rn; Ax≤ y} ,

where A is a f × n matrix and y a vector of n values, so-called
the H-coefficients (Ziegler, 2012). The H-representation of a
polytope P is with minimal parameter if P = {x ∈ Zn;Ax≤ y }
with A being such that ∀k ∈ [1 . . . f ], ∃x ∈ P Akx = yk (Nor-
mand and Évenou, 2009).2 In other words, A is the mini-
mal H-representation of BR if each linear hyperplane of the H-
representation of BR contains at least one point in BR∩Zn.

From Normand and Évenou (2009), an important result for
distance computation can be summarized as follows:

Proposition 1 (Direct Distance Computation) Given a
chamfer norm M and (A,y) its minimal parameter H-
representation, then for any a ∈ Zn, the chamfer distance of the
point a from the origin is

dM(O,a) = max
1≤k≤ f

{AkaT} . (3)

Coming back to general path-based digital metrics,
(weighted) neighborhood sequences have been proposed to
have a better approximation of the Euclidean metric (Rosenfeld
and Pfaltz, 1966; Mukherjee et al., 2000; Strand, 2008; Nor-
mand et al., 2013a). The main idea is to combine sequences
of elementary chamfer norms. A key result has been demon-
strated by Normand et al. (2013a) stating that for such distance
functions, a minimal parameter polytope representation exists
and that distances can be obtained from an expression similar
to (3):

d(O,a) = max
1≤k≤ f

{γk(AkaT )} , (4)

2Ak being the kth row of A.
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Fig. 1. Chamfer masks and rational balls: in dimension 2, generator vectors for the mask M3−4 (a), its rational ball (b). Generator vectors for M5−7−11
(c) and its rational ball (d). In dimension 3, rational ball of a chamfer mask obtained using generator vectors (x,y,z) ∈ [[−3,3]]3 and weights computed
following Fouard and Malandain (2005).

γk : N→ N being some integer sequence characterizing the
neighborhood sequence metric. As we will see in the next sec-
tions, direct distance computation is key to design an efficient
distance transformation algorithm. Similarity of Equations 3
and 4 makes the algorithms presented in the following sec-
tions for chamfer norms easily generalizable to neighborhood
sequences.

To conclude this preliminary section, algorithms efficiency is
characterized by their asymptotic behavior using the O(·) and
Θ(·) notations3 as a function of the dimension, the number of
vectors defining the chamfer norm and the domain size.

3. Separable distance transformation

3.1. Voronoi map from separable approach and metric condi-
tions

Several authors have described optimal in time and separa-
ble techniques to compute error-free Voronoi maps or distance
transformations for L2 and Lp metrics (Breu et al., 1995; Hirata,
1996; Meijster et al., 2000; Maurer et al., 2003). Separability
means that computations are performed dimension by dimen-
sion. In the following, we consider the Voronoi Map approach
as defined by Breu et al. (1995). Given a digital set X defined
on an hyper-rectangular domain [1..N1]× . . .× [1..Nn], let us
first define the image IX : [1..N1]× . . .× [1..Nn]→ {0,1} such
that IX (a) = 1 for a ∈ [1..N1]× . . .× [1..Nn] iff a ∈ X (IX (a) = 0
otherwise). The separable algorithm that computes the Voronoi
Map for IX is defined in Algorithm 1 and works on the image
spans for each dimension. An image span S along dimension q
is a vector of Nq points with same coordinates except at their qth

one. The qth coordinate of a point a ∈ Zn is denoted by aq. A
given span S in dimension q is denoted by {si}i=1...Nq . In Algo-
rithm 1 the Voronoi map is first initialized by processing each
span of the input image along the first dimension in order to cre-
ate independent 1D Voronoi maps for the metric (lines 5− 6).
Then, for each further dimension q, the partial Voronoi map
ΠX is updated using one dimensional independent processes on

3In a computational model where arithmetic operations and scalar compar-
isons are constant time with: f (x) = O(g(x))⇔∃C,x0 ∈R+ ,∀x > x0 , | f (x)| ≤
C · g(x), and f (x) = Θ(g(x))⇔ ∃C,C′,x0 ∈ R+ ,∀x > x0 ,C · g(x) ≤ | f (x)| ≤
C′ ·g(x).

each span along the qth dimension (line 8). Algorithm 2 de-
scribes the function VORONOIMAPSPAN. This function is the
core of the separable algorithm as it defines the 1D processes
to perform on each row, column and higher dimensional image
span. In this process, metric information are embedded in the
following key predicates (see Fig. 2):

1. CLOSEST(a,b,c): given three points a,b,c∈Zn this pred-
icate returns true if d(a,b)< d(a,c);

2. HIDDENBY(a,b,c,S): given a 1D image span S parallel to
the qth coordinate axis, and three points a,b,c ∈ Zn such
that aq < bq < cq, this predicates returns true if there is no
s ∈ S such that

d(b,s)< d(a,s) and d(b,s)< d(c,s) . (5)

Algorithm 1: VORONOIMAP(BINARY MAP IX )

1 ΠX = empty image, same size as IX ;
2 for q in {1 . . .n} do
3 for (x1, ..xq−1,xq+1, ..xn) in

[1..N1]× ..[1..Nq−1]× [1..Nq+1]..× [1..Nn] do
4 S = {si}i∈[1..Nq ] where si = (x1..xq−1, i,xq+1..xn);

// all the coordinates are fixed in S except

the qth one

5 if q == 1 then
// ΠX is initialized span by span

6 ΠX = ΠX ∪ VORONOIMAPSPAN(IX , q, S);

7 else
// ΠX is updated along span S

8 ΠX = VORONOIMAPSPAN(ΠX , q, S);

9 return ΠX

In other words, HIDDENBY returns true if and only if the
Voronoi cells of sites a and c hide the Voronoi cell of b along S.

Remark. Note that by construction, for a given span S along
dimension q, points a, b, c given as parameters to the HID-
DENBY predicate necessarily verify aq , bq , cq. Indeed, these
points are defined as the (partial) Voronoi map images of three
points si, s j, sk (i , j , k) of S, therefore having their qth co-
ordinate equal to i, j, and k respectively (see lines 11,12,15 of
Algorithm 2, and Figure 3 for an illustration).

For L1, L2 and L∞ metrics, CLOSEST and HIDDENBY pred-
icates can be computed in O(n) in dimension n (Breu et al.,
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Algorithm 2: VORONOIMAPSPAN(MAP MX , DIMENSION q ,
1D SPAN S)

Data: q is an integer in {1 . . .n};
S is a 1D span along dimension q, with points {s1, . . . ,sNq} sorted by
their qth coordinate;
MX is either a binary map if q = 1 or a partial Voronoi Map.
Result: Partial Voronoi map ΠX updated along S.

1 if q == 1 ; // Special case for the first dimension

2 then
3 ΠX = empty image, same size as MX ;
4 k = 0;
5 foreach point s in S do
6 if MX (s) == 0 then // if s ∈ Zn\X
7 LS[k] = s;

// LS =list of the sites visible on S
8 k++;

9 else
10 ΠX =MX ;
11 LS[0] =MX (s1);
12 LS[1] =MX (s2);
13 k = 2 , l = 3;

// Update the list LS
14 while l ≤ Nq do
15 w =MX (sl);
16 while k ≥ 2 and HIDDENBY(LS[k−1],LS[k],w,S) do

// LS[k] is no longer visible, unstack

17 k−− ;

18 k++ ; l ++;
19 LS[k] = w;

20 foreach point s in S by increasing qth coordinate do
21 while (k < |LS|) and CLOSEST(s, LS[k+1], LS[k]) do

// s is closer to LS[k+1], look further

22 k++ ;

23 ΠX [s] = LS[k];

24 return ΠX

1995; Maurer et al., 2003). Hence, Algorithm 2 is in O(n ·Nq)
for the dimension q, leading to an overall computational time
for the Voronoi Map (Algorihtm 1) and Distance Transfor-
mation computations in Θ(n2 ·Nn) (if we assume that ∀q ∈
[1 . . .n],Nq = N). Note that for Lp metrics, we can derive a
Θ(n · Nn) algorithm as suggested in Hirata (1996); Meijster
et al. (2000) using the following observation: when evaluating
the CLOSEST predicates in line 21 of Algorithm 2, we compare
distances along the 1-D span of dimension q. If we store the
partial power p of the distance to the closest site a for each grid
point y for previous dimensions (i.e the sum ∑

q−1
i=1 (ai− yi)

p),
such distance comparisons can be obtained in O(1). Similar
argments can be used for the HIDDENBY predicates of line 16,
leading to the overall computational cost in Θ(n ·Nn).

Hirata (1996) or Maurer et al. (2003) discussed about condi-
tions on the metric d to ensure that Algorithm 2 is correct. The
key property can be informally described as follows: given two
points a,b ∈ Zn such that aq < bq and a straight line l along the
qth direction and if we denote by vl(a) (resp. vl(b)) the inter-
section between the Voronoi cell of a (resp. b) and l, then vl(a)
and vl(b) are simply connected Euclidean segments and vl(a)
appears before vl(b) on l (so called monotonicity property by
Maurer et al. (2003) and is related to quadrangle inequality by
Hirata 1996). These contributions are summed up in Definition

a

b

c

S(a)

a

b

c

S(b)

b

c

a

S(c)

Fig. 2. Geometrical predicates for Voronoi map construction
Coeurjolly (2014): HIDDENBY(a,b,c,S) returns true in (a) and
false in (b) (straight segments correspond to Voronoi diagram
edges). (c) illustrates the CLOSEST(a,b,c) predicate for a ∈ S.

sjMX(s
j)

si

MX(s
i)

S

Fig. 3. For two points si and s j (in purple) on a span S along dimension q
(in red), the partial Voronoi map images MX (si) and MX (s j) (in black)
respectively have i and j as qth coordinate.

4 and Proposition 2.

Definition 4 (Axis symmetric ball norm) A metric d induced
by a norm whose unit ball is symmetric with respect to grid axes
is called axis symmetric ball norm.

Proposition 2 (Metric conditions (Hirata, 1996)) Algorithm
1 exactly computes the Voronoi Map ΠX of a binary input
image IX for any axis symmetric ball norm.

Proposition 2 implies that most chamfer norms and neigh-
borhood sequence based norms can also be considered in sepa-
rable Algorithm 1 (see Fig. 4). However, note that Algorithm 2,
and as a by-product Algorithm 1, are exact only if the distance
comparison predicate is exact, i.e. if we can compare distances,
through the CLOSEST and HIDDENBY predicates, without er-
ror.

Furthermore, computational efficiency of the algorithm re-
quires the design of efficient algorithmic tools to implement
these predicates, and this the purpose of the next sections.

3.2. Generic predicates and complexity analysis for axis sym-
metric ball norms

We first detail the overall computational cost of Algorithms
2 and 1. We assume in the following that ∀q ∈ [1 . . .n], Nq = N.

Lemma 1 (Maurer et al. 2003; Coeurjolly 2014)
Let (Zn,F,d) be a metric space induced by a norm with
axis symmetric unit ball. If C denotes the computational cost
of CLOSEST predicate and H is the computational cost of the



6

Fig. 4. Distance transformation from a single source for different metrics
satisfying Definition 4 and thus Proposition 2: (from left to right) L1, L2, L4,
L80, M3−4 and M5−7−11.

HIDDENBY predicate, then Algorithm 2 is in O(N · (C+H)),
leading to a complexity of O(n ·Nn · (C+H)) for Algorithm 1.

For a given axis symmetric ball norm d, generic Algo-
rithms 3, 4 and 5 were defined in Coeurjolly (2014). Note that
these algorithms are valid for any dimension n. The compu-
tational cost of the CLOSEST predicate is simply the one of a
distance evaluation. As a first approach, Algorithms 4 and 5
show that the HIDDENBY predicate can be obtained by a bi-
nary search on the 1D image span S to localize the abscissa of
Voronoi edges of sites {a,b} and {b,c}.

Algorithm 3: Generic CLOSEST(a,b,c ∈ Zn).

1 return d(a,b)< d(a,c);

Algorithm 4: Generic VORONOIEDGE(a,b,si,s j ∈Zn) with i< j,
aq < bq.

1 if ( j− i = 1) then
2 if i = 1 and CLOSEST(si,b,a) then
3 return −∞;

4 if i = Nq and CLOSEST(si,a,b) then
5 return ∞;

6 return i;

7 mid = i+( j− i)/2;
8 if CLOSEST(smid ,a,b) then

// smid closer to a
9 return VORONOIEDGE(a,b,smid ,s j)

10 else
// smid closer to b

11 return VORONOIEDGE(a,b,si,smid )

The complexity H of Algorithm 5 can be expressed as a func-
tion of the complexity C of Algorithm 3, leading to the general
result below:

Lemma 2 (Coeurjolly 2014) Let M be a chamfer norm with
axis symmetric unit ball in dimension n whose rational ball has
f facets, Algorithm 1 can be implemented with a computational
complexity of O(n ·Nn ·C · logN), where Nn is the size of the
image.

Algorithm 5: Generic HIDDENBY(a,b,c ∈ Zn;S in the qth direc-
tion) with aq < bq < cq.

1 vab = VORONOIEDGE (a,b,s1,sNq );
2 vbc = VORONOIEDGE (b,c,s1,sNq );
3 return (vab > vbc);

4. Distance transformation for Lp metrics

As a direct consequence of Lemma 1, we briefly derive com-
putational costs for Lp metrics. For such metrics, as discussed
in Section 3.1, the CLOSEST and HIDDENBY predicates are
in O(n) for p = {1,2,∞} with exact integer only computations
(Maurer et al., 2003; Meijster et al., 2000). We thus have dis-
tance transformation algorithms in Θ(n2 ·Nn). Let us now show
that Algorithm 3 and 5 lead to a faster algorithm for any p≥ 1.

For p ∈ R, p ≥ 1, we can use approximations of the eval-
uation of distances on IEEE 754 double and then consider the
Generic HIDDENBY predicate in O(n · logN) (Alg. 5). As pred-
icates being based on floating point computations, numerical
issues may occur but we have an O(n2 ·Nn · logN) distance
transformation algorithm (Lp inexact predicates in Table 1). If
p ∈ Z, p ≥ 3, we use exact integer number based computa-
tions of distances storing sum of power p quantities (which can
be computed in O(n · log p) thanks to exponentiation by squar-
ing). The HIDDENBY predicate is also based on Algorithm 5,
leading to an O(n2 ·Nn · log p · logN) distance transformation
algorithm (Lp exact predicates in Table 1).

5. Distance transformation in higher dimension for cham-
fer norms

In this section, we consider digital metrics given by chamfer
norms and propose an efficient algorithm to compute the sepa-
rable distance transformation for such metrics in nD. In Coeur-
jolly (2014), the structure of the rational ball of a chamfer mask
in dimension 2 was used to obtain an O(logm) algorithm for the
CLOSEST predicate, and an O(log2 m) one for the HIDDENBY
predicate, leading to an overall O(log2 m ·N2) algorithm for the
separable distance transformation (see Table 1). The following
sections extend these results to higher dimensions.

5.1. Definitions and general principle

Let us consider a general chamfer norm in arbitrary dimen-
sion n with m weighted chamfer vectors. As explained in Sec-
tion 2, these vectors define a rational ball BR (see Definition
3), the center of which can be any point p. We define a wedge
(p, fk) as the conical hull of p (called the apex) and the ver-
tices of a given facet fk of BR (k ∈ {1.. f} if BR has f facets).
Thus, to each wedge is associated a row Ak of the matrix of the
minimal H-representation of BR. Note that Ak can also be seen
as a - non-unitary - normal vector to the facet fk, as quoted by
Normand and Évenou (2009). In the following, given a point
a and a point p, we denote by (a,Fa(p)) the wedge of apex a
containing point p, Fa(p) being one facet of BR (see Figure 5).

Using similar notations, Thiel (2001) and Strand (2008)
demonstrated that distance evaluation between a point a and
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a point p can be obtained in two steps: first, compute the wedge
(a,Fa(p) = fk); then

dM(a, p) = Ak.(p−a)T . (6)

Thus, implementing the CLOSEST predicate comes down to
computing the wedge a given point belongs to. In 2D, it was
shown in Coeurjolly (2014) that a binary search over the cham-
fer vectors was enough. The nD case is discussed in section
5.2.

Let us now see how to optimize the HIDDENBY predicate,
which comes down to optimizing the VORONOIEDGE function.
Given two points a and b (aq < bq) and a 1D image span S along
the qth dimension, we have to find the point e of S (e∈Zn) with
abscissa eq such that all the points of S of abscissa lower than
eq are in the Voronoi cell of a while all the points with a greater
abscissa are in the Voronoi cell of b. To compute eq let us define
l(S) as the one-dimensional flat that contains all the points of S
and consider the Euclidean point ξ ∈ l(S) satisfying:

dM(a,ξ ) = dM(b,ξ ) . (7)

In other words, we are looking for the point in l(S) which is
equidistant to a and b. To compute ξ , we first suppose that we
know the two wedges (a,Fa(ξ ) = fk) and (b,Fb(ξ ) = fl) (see
Fig. 6−(b)). In this situation, ξ is the solution of

Ak · (ξ −a)T = Al · (ξ −b)T . (8)

Note that since ξ ∈ l(S), we have one linear equation with
only one unknown, ξq. As a consequence, if we know the two
wedges point ξ belongs to, we have its qth coordinate ξq in
O(1). As A is the minimal representation of BR, it has rational
components and thus ξ has integer coordinates execpt ξq which
is rational. Finally, the integer point e ∈ S is given such that
eq = bξqc.

The next section is dedicated to the CLOSEST predicate while
in section 5.3 we detail how to efficiently compute the wedges
(a,Fa(ξ ) = fk) and (b,Fb(ξ ) = fl), summarized in Algorithm
7 (see also Fig. 6−(b)).

5.2. CLOSEST predicate and first results
To begin with, let us discuss about the combinatorics of

the chamfer norm rational ball. If m denotes the number
of weighted vectors of M, its rational ball BR has O(mb

n
2 c)

i−facets (for all 0 ≤ i ≤ n) (de Berg et al., 2000). If f denotes
the number of (n−1)−facets of BR, then we have:

Lemma 3 Let M be a chamfer norm whose rational ball BR
has f (n−1)−facets in dimension n, then distance computation
and thus CLOSEST predicate are in (amortized) O(n+ log f )

with O
(

f b
n
2 c

(log f )b
n
2 c−δ

)
space and preprocessing time4.

The proof is given in Appendix A.
Algorithm 4 being valid in any dimension, we can merge this

result with Lemma 2 to straightforwardly obtain the result be-
low:

4δ is an arbitrarily small positive constant.

Lemma 4 Let M be a chamfer norm whose rational ball BR
has f (n− 1)−facets in dimension n, separable exact Voronoi
Map ΠX can be obtained in O(n ·Nn · logN ·(n+ log f )), thanks

to a preprocessing in O
(

f b
n
2 c

(log f )b
n
2 c−δ

)
.

However, we show below that we can still expect faster
VORONOIEDGE function even in higher dimension.

5.3. Improved HIDDENBY predicate
In dimension 2, it was shown in Coeurjolly (2014) that it was

possible to reduce the complexity from a logarithmic factor on
the size N of the image to a logarithmic factor on the size m of
the mask using binary search over chamfer vectors. This pro-
cess cannot be extended straighforwardly in higher dimensions
since chamfer vectors cannot be ordered to perform a binary
search anymore. However, it is interesting to notice that, what-
ever the dimension n, vectors from a given point a to any point
of a span S lie in the smallest affine subspace containing a and
the one-dimensional flat l(S).

l(S)
s1

sN

a

(a,Fa(sN))

Fa(s1)

Fig. 5. Vectors si−a lie in a 2-flat defined by l(S) and a, in light green. The
distance dM between a point on S and a is computed via a ray shooting that
returns the n−1-facet of BR traversed by the ray si−a : wedge (a,Fa(sN))
and facet Fa(s1) are depicted in light red.

In the general case where a does not lie on S, this is actu-
ally always a 2-flat, denoted by P , and the intersection of this
2-flat with the rational ball BR is a polygon (see Fig. 5). The
vertices of this polygon could be used to define a set of vectors
on which a binary search could be performed as in the 2D case
Coeurjolly (2014). However, since a 2-flat is actually the in-
tersection of n−2 hyperplanes, computing this polygon comes
down to intersecting a n-polytope with n− 2 hyperplanes. By
duality, each of these operations is equivalent to a convex hull
computation, with a complexity of O( f bn/2c) (Chazelle, 1993;
Bajaj and Pascucci, 1996). As a consequence, in order to make
the approach efficient, we must avoid to compute explicitly this
intersection.

This is achieved by rewriting the VORONOIEDGEWEDGE
function as presented in Algorithm 6. As before, let e ∈ Zn

be the point on S such that all the points of S of abscissa lower
than eq are in the Voronoi of a while all the points with a greater
abscissa are in the Voronoi cell of b. Given a, the goal of this
function is to find the wedge of BR (of apex a) e belongs to.
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The algorithm computes two points si and s j such that si be-
longs to the Voronoi cell of a (if aq < bq, b otherwise), s j to the
Voronoi cell of b (if aq < bq, a otherwise) and either j− i = 1 or
Fa(si) = Fa(s j). Similarly to generic Algorithm 4, this is done
by performing a binary search over the points of S, with a key
difference on exit conditions: now, the algorithm does not wait
until point e is found, but exits as soon as the two points si and
s j belong to the same wedge (line 1). Indeed, by convexity of a
wedge, this implies that any point on S between si and s j - and
in particular e - also belongs to the same wedge. Correctness of
the algorithm is ensured by maintaining two invariants : (i) si is
lower than s j on span S (si

q < s j
q) ; (ii) if aq < bq, si is in a’s

Voronoi cell, s j in b’s Voronoi cell, and conversely if bq < aq.
Figure 6 illustrates the first step of the binary search in (a),

and the situation at the end of the search in (b) (projection in
plane P).

Algorithm 6: VORONOIEDGEWEDGEND(a,b ∈ Zn; i, j ∈ Z, i <

j; span S along the qth direction; faces fki = Fa(si), fk j = Fa(s j) )

1 if fki = fk j or j− i = 1 then
2 return fki ;
3 else
4 mid = i+( j− i)/2;

// Check whether smid is closest to a or to b
// O(n+ log f ) evaluation of distances w.r.t. a

and b
5 Compute fk = Fa(smid); d(a,smid) = Ak · (smid −a)T ;
6 Compute fl = Fb(smid); d(b,smid) = Al · (smid −b)T ;
7 if d(a,smid)< d(b,smid) then
8 if aq < bq then
9 return

VORONOIEDGEWEDGEND(a,b,mid, j,S, fk, fk j )

10 else
11 return

VORONOIEDGEWEDGEND(a,b, i,mid,S, fki , fk)

12 else
13 if aq < bq then
14 return

VORONOIEDGEWEDGEND(a,b, i,mid,S, fki , fk)

15 else
16 return

VORONOIEDGEWEDGEND(a,b,mid, j,S, fk, fk j )

It remains now to use Algorithm 6 to compute point e. Al-
gorithm 7 implements the VORONOIEDGEND function as the
nD counterpart of the VORONOIEDGE function of Coeurjolly
(2014). First, lines 1 to 11 are dedicated to checking whether
the bisector of a and b crosses span S or not. If it does not,
algorithm exits with an error code (lines 5 or 11). Otherwise,
wedges (a,Fa(e)) (b,Fb(e)) are computed lines 12-13 calling
the VORONOIEDGEWEDGEND function (see Figure 6(b) for
an illustration).

Proposition 3 LetM be a chamfer norm in dimension n whose
rational ball BR has f (n− 1)−facets. Let W be the computa-
tional time complexity of the VORONOIEDGEWEDGEND func-
tion. Then, the separable exact Voronoi Map can be obtained in

(amortized) O(n ·Nn · (n+ log f +W )) with a O
(

f b
n
2 c

(log f )b
n
2 c−δ

)

S

a

Fa(s1)

sN

s1

Fa(sN)

smid

(a)

S

a

Fa(si) = Fa(sj) = fk

sj

si

b

si
′

sj
′

F b(si
′
) = F b(sj

′
) = fl}

e ?

(b)

Fig. 6. View of the 2-flat P: (a) Binary search initialization to compute the
wedge (a,Fa(e)). (b) After completion of two binary searches, both wedges
(a, fk = Fa(e)) and (a, fl = Fb(e)) are known.

space and preprocessing time. More precisely, the worst-case
complexity W beingO((n+ log f ) · logN), this leads to a global
(amortized) complexity of O(n ·Nn · logN · (n+ log f )) (same
preprocessing).

The proof is given in Appendix B.
Note that in the worst-case, this approach does not im-

prove the result presented in Lemma 4 (using the generic
VORONOIEDGE of Algorithm 4). However, in Section 6, we
give some experimental insights on a finer analysis of the com-
plexity W under distribution hypothesis.

6. Experimental analysis

6.1. Insights on the complexity in dimension n

The complexity W of Algorithm 7 depends on the number
of recursion steps done until points si and s j are in the same
wedge. Wedges being defined by the n−1 dimensional faces of
BR, this complexity depends on the distribution of the chamfer
vectors defining BR.

Let us denote by P the intersection between the (n−1)-faces
of BR and the 2-flat P (see the red polygon on Fig. 5). Note that
P goes through the center of BR. If we assume that the vectors
defining BR are uniformely distributed on the unit sphere Sn and
that the faces of P are also uniformely distributed on BR ∩P ,
then we can expect that W = O((n+ log f ) · log |P|). Even if
studying precisely these questions is out of scope of this work,
in the following we give insights on both the relevance of these
assumptions and the behaviour of |P| in the context of chamfer
norms.
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Algorithm 7: VORONOIEDGEND(a,b ∈ Zn, span S).

// Check that the bisector of a and b crosses span S
1 Compute fk1 = Fa(s1), fl1 = Fb(s1);
2 d(a,s1) = Ak1 · (s1−a)T ; d(b,s1) = Al1 · (s1−b)T ;
3 if (aq < bq and d(b,s1)< d(a,s1)) ; // or (bq < aq and

d(a,s1)< d(b,s1))
4 then
5 Bisector does not cross S. return −1.
6 else
7 Compute fkN = Fa(sN), flN = Fb(sN);
8 d(a,sN) = AkN · (sN −a)T ; d(b,sN) = AlN · (sN −b)T ;
9 if (aq < bq and d(a,sN)< d(b,sN)) ; // or (bq < aq and

d(b,sN)< d(a,sN))
10 then
11 Bisector does not cross S. return −1.

// Compute e
12 fk =VORONOIEDGEWEDGEND(a,b,1,N,S, fk1 , fkN );
13 fl =VORONOIEDGEWEDGEND(b,a,1,N,S, fl1 , flN );
14 Compute abscissa ξq of the point ξ ∈ S such that

Ak · (ξ −a)T = Al · (ξ −b)T ;
15 returnbξqc;

6.1.1. Some observations on the distribution hypothesis
To study the distribution of chamfer vectors, we consider

chamfer masks where vectors are defined from a subset of Farey
sequences, as presented in Section 2 (see also Thiel (2001) and
Fouard and Malandain (2005)). Studying the distribution of
such sets of vectors is a field of research in itself, and we sim-
ply mention below several results relevant to our context.

First, it is well-known from Marklof (2013); Marklof and
Strömbergsson (2015) that n-dimensional lattice points visible
from the origin have a constant density in Rn. Moreover, Boca
et al. (2000) studied in the 2D case the distribution of the angles
of straight lines from the origin through visible points. More
precisely, they study the proportion of differences between con-
secutive angles which are larger than the average: they show
that this proportion is smaller than what is expected for a ran-
dom distribution, and give an explicit formulation of the repar-
tition function. Similar results in higher dimension remain an
open question.

These results tend to support the hypothesis of a uniform dis-
tribution of the vectors of BR, but the question of the distribution
of the faces of the polygon P has not been investigated to our
knowledge.

6.1.2. Experimental behaviour of |P|
In this part, we investigate the number of faces of P when

BR is a rational ball defined from Farey Sequences. The results
are presented in Figure 7 and we detail below how the rational
balls are generated, how the 2-flats P are selected, and how the
intersection between BR and P is performed.

In the four subfigures of Figure 7, rational balls are defined
from Farey sequences:

• In (b-d), the vectors of BR are all normalized vectors of a
Farey sequence of order m (the higher the order, the greater
the number of vertices - and (n− 1)-faces - of BR). The
order of the Farey sequences ranges from 1 to 10 in (b-c),
from 1 to 6 in (d);

• in (a), BR is computed thanks to the algorithm presented by
Fouard and Malandain (2005).5 Given a (odd) mask size
m, and a maximal error ε , the algorithm computes a sub-
set of vectors of Fm−1

2
and weights such that the rational

ball BR is convex and the error with respect to the optimal
theoretical error expected (wrt the Euclidean distance) for
this mask size is below ε .

Once the sets of vectors defined, we use Qhull (Barber et al.,
1996) to compute both the rational ball itself and its intersec-
tion with a 2-flat P that goes through the center of BR. This
intersection is performed by randomly picking the coefficients
of n− 2 (n− 1)-hyperplanes containing the center of BR, and
iteratively adding each (n− 1)-hyperplane. The vertices of P
are the points lying on all (n−1)-hyperplanes.6

For each rational ball, a certain number of cuts is performed:
from 1000 in dimension 3 to only 6 in dimension 5 for ratio-
nal balls obtained from Farey sequences of order 5 and 6 (due
to precision issues in Qhull). 95% confidence intervals are de-
picted for each point (i.e. for each rational ball) as error bars,
but most of the time too small to be visible on the graphs. Note
that this remark suggests that the size of |P| does not depend
on the position of P , thus supporting the uniform distribution
hypothesis discussed in the previous section.

Analysing these results, we see that |P| seems to behave as
f α , with α < 0 and decreasing when the dimension increases.
This suggests that, in practice, the complexity W of Algorithm
7 is expected to be O((n+ log f ) · log f ). Similarly to dimen-
sion 2 (Coeurjolly, 2014), this approach is expected to lower
down the worst case complexity of the computation of the dis-
tance transformation for chamfer norms in dimension n from a
logarithmic factor on the size N of the image, to a logarithmic
factor on the size f of the rational ball.

6.2. Distance transformation in dimension 2

We evaluate the performance of the separable approach to
compute restricted Voronoi diagrams and distance transforma-
tion for chamfer norms in dimension 2. First, we observe that
using Algorithm 1 with the nD VORONOIEDGE (Alg. 7), we
obtain an overall complexity in O(logm · logN ·N2) which is
close to the O(log2 m ·N2) complexity of the ad-hoc 2D version
of the problem (Coeurjolly, 2014). These complexities have
to be compared with the O(m ·N2) complexity of the classical
raster scan approach for chamfer norms (Borgefors, 1986). In
Fig. 8-(a), we first illustrate some restricted Voronoi map re-
sults on small domains.

In Fig.8-(b− c), we have considered a 2D domain 20482

with 2048 random sites. First, we observe that fixing N, the
log2 m term is clearly visible in the computational cost of the
Voronoi map (single thread curve). Bumps in the single thread
curve may be due to memory cache issues. Please note that if

5Code is available on the TC18 website www.tc18.org/code_data_set/
code.php

6Python code used to generate Farey sequences and to compute
these graphs is available on http://www.gipsa-lab.fr/~isabelle.

sivignon/recherches_en.html.

www.tc18.org/code_data_set/code.php
www.tc18.org/code_data_set/code.php
http://www.gipsa-lab.fr/~isabelle.sivignon/recherches_en.html
http://www.gipsa-lab.fr/~isabelle.sivignon/recherches_en.html
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Fig. 7. Number of faces of P with respect to the number of (n−1)-faces of BR in different settings. In (a), BR is a rational ball as computed by Fouard and
Malandain (2005) in dimension 3. In (b-c), BR is defined from a Farey sequence of given order and dimension, taking all the fractions : (b) dimension 3,
for orders between 1 and 10, (c) dimension 4 for order between 1 and 10, (d) dimension 5 for orders between 1 and 6. Each point is the mean of a certain
number of random cuts (1000 in dimension 3, 500 in dimension 4, 400 in dimension 5 for orders up to 4, and 6 in dimension 5 for orders 5 and 6.).

we consider classical chamfer norm DT from raster scan (and
sub-masks), the computational cost is in O(m ·N2) and thus
has a linear behavior (green curves in Fig. 8-(b− c)). Since
we have a separable algorithm, we can trivially implement it in
a multi-thread environment (here using OpenMP). Hence, on a
bi-processor and quad-core (hyper-threading) Intel(R) Xeon(R)
cpu (16 threads can run in parallel), we observe a speed-up by a
factor 10 (orange curves in Fig. 8-(b−c)). In Fig. 9, we present
a shape processing experiment: when considering a chamfer
norm mask with m = 100, both the raster scan and our separa-
ble approaches produce the same distance transformation (Fig.
9−(c)) but the raster scan approach has been obtained in 520ms
whereas our separable approach only requires 25ms (note that
since the domain is small –128×127–, the OpenMP scheduler
has only considered a single core for the separable Voronoi map
computation).

Implementation of all separable algorithms are publicly
available in the DGtal library ( dgt ).

7. Conclusion and Discussion

In this article, we have proposed generic algorithms to effi-
ciently solve the restricted Voronoi map and distance transfor-
mation problems for a large class of metrics in any dimension.
Focusing on chamfer norms, geometrical interpretation of this
generic approach allows us to design an algorithm with loga-
rithmic factors in the chamfer mask size compared to a linear
one for previous approaches. Thanks to separability, parallel
implementation of the distance transformation leads to efficient
distance computation for path based metrics.

For the L2 metric, (additively) weighted Voronoi maps, also
known as power maps, can be used to solve the reverse distance
transformation and medial axis extraction problem using simi-
lar separable techniques (Coeurjolly and Montanvert, 2007). A
challenging future work would be to extend these results for
path-based norms such as chamfer norms.
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Fig. 8. (a) Voronoi map (first and third columns) and distance transformation (second and fourth columns) for the chamfer norm of mask M5−7−11, and
the Lp metrics L2 and L80. The digital shape X considered is the whole [0,256]2 domain except two random points in the first two columns, and 10 random
points in the last two ones.(b) Experimental evaluation of the subquadratic algorithm when increasing the mask size on a [0,2048]2 image and following
the chamfer norm construction of Fouard and Malandain (2005) (zoom in (c)). We compare the efficiency of Algorithm 1 in single thread and multi-thread
settings, with the classical raster scan approach of Borgefors (1986) (only single thread).

(a) (b) (c)

Fig. 9. Example of distance transformation based shape processing: (a) initial shape (128×127 domain), (b) its Voronoi map using a chamfer norm mask
with 100 vectors, (c) its associated distance map.
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quences, in: González-Dı́az, R., Jiménez, M.J., Medrano, B. (Eds.), DGCI.
Springer. volume 7749 of LNCS, pp. 169–179.
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Normand, N., Strand, R., Évenou, P., Arlicot, A., 2014. A streaming distance
transform algorithm for neighborhood-sequence distances. IPOL Journal
4, 196–203. URL: https://doi.org/10.5201/ipol.2014.68, doi:10.
5201/ipol.2014.68.

Ragnemalm, I., 1993. The Euclidean Distance Transform. Ph.D. thesis.
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Appendix A. Proof of Lemma 3

Similarly to the 2D case, the distance dM(O,a) for a ∈
Zn is given by first solving a ray-shooting problem on con-
vex polytopes which consists in first computing the (n− 1)-
facet of BR pierced by the ray (O,a) (see Fig. 5). Once
the facet is obtained, the associated Ak row is used to eval-
uate dM(O,a) = Ak · aT in O(n). Following Matousek and
Schwarzkopf (1993) Theorem 10, such a ray-shooting query
on convex polytopes can be solved in O(log f ) thanks to a pre-

processing in O
(

f b
n
2 c

(log f )b
n
2 c−δ

)
. In the case when the ray hits a

facet of dimension strictly lower than n− 1, the algorithm re-
turns one of the adjacents (n− 1)-facets. Propositions 3 and
4 from Normand and Évenou (2009) ensure that the choice of
any (n−1)-facet leads to the same distance evaluation. Please
note also that the preprocessing time is roughly equivalent to
the convex hull computation in higher dimension which is in
O( f b

n
2 c). Hence, preprocessing for ray-shooting can be done

while computing the rational ball BR using Eq. (2).�

Appendix B. Proof of Proposition 3

Following Lemma 1, the generic separable algorithms com-
putes the Voronoi map in O(n ·Nn · (C +H). Lemma 3 states

that C = O(n+ log f ) with a O
(

f b
n
2 c

(log f )b
n
2 c−δ

)
space and prepro-

cessing time. Remains to evaluate H, i.e. the complexity of the
VORONOIEDGEND function. In Algorithm 7, the first eleven
lines are in O(C) since only distance computations are involved.

http://dgtal.org
http://dgtal.org
www.qhull.org
www.qhull.org
http://dx.doi.org/10.1145/235815.235821
http://linkinghub.elsevier.com/retrieve/pii/S0262885606003064
http://linkinghub.elsevier.com/retrieve/pii/S0262885606003064
https://doi.org/10.5201/ipol.2014.68
http://dx.doi.org/10.5201/ipol.2014.68
http://dx.doi.org/10.5201/ipol.2014.68
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Lines 12 and 13 are calls to the VORONOIEDGEWEDGEND
function, with a complexity in O(W ). In the worst case, we
have W = O((n+ log f ) · logN) thanks to the test j− i = 1 on
line 1 of Algorithm 6. Last, the system to solve in line 14 has
only one unkwown ξq since ξ belongs to the one-dimensional
span S, with a complexity of O(1).�


	Introduction
	Preliminaries
	Metric space and distance transformation
	Chamfer norms
	Distance computation for chamfer norms

	Separable distance transformation
	Voronoi map from separable approach and metric conditions
	Generic predicates and complexity analysis for axis symmetric ball norms

	Distance transformation for Lp metrics
	Distance transformation in higher dimension for chamfer norms
	Definitions and general principle
	Closest predicate and first results
	Improved HiddenBy predicate

	Experimental analysis
	Insights on the complexity in dimension n
	Some observations on the distribution hypothesis
	Experimental behaviour of |P|

	Distance transformation in dimension 2

	Conclusion and Discussion
	Proof of Lemma 3 
	Proof of Proposition 3

