
Minimum Decomposition of a Digital Surface

into Digital Plane Segments is NP-Hard

Isabelle Sivignon, David Coeurjolly

LIRIS, CNRS UMR-5205, Université Claude Bernard Lyon 1, 43 boulevard du 11

novembre 1918, F-69622 Villeurbanne, France

Abstract

This paper deals with the complexity of the decomposition of a digital surface into
digital plane segments (DPS for short). We prove that the decision problem (does
there exist a decomposition with less than λ DPS ?) is NP-complete, and thus that
the optimisation problem (finding the minimum number of DPS) is NP-hard. The
proof is based on a polynomial reduction of any instance of the well-known 3-SAT
problem to an instance of the digital surface decomposition problem. A geometric
model for the 3-SAT problem is proposed.

Key words: digital object, digital plane, decomposition, complexity

1 Introduction

Digital objects are defined as connected sets of grid points in Zn. Those ob-
jects carry redundant geometrical information due to their discrete structure:
an object is represented as a set of elementary cells (called pixels in 2D, voxels
in 3D). The definition of digital linear structures such as digital lines [1] and
digital planes [2,3] originated a lot of works dealing with the decomposition of
the surface of a digital object into digital linear primitives. Such a decomposi-
tion actually apprehends global geometrical properties of these objects and is
the first step toward an efficient reversible polyhedrization process (see Figure
1) [4–6]. Many decomposition strategies may be designed and the number of
parts computed by the algorithms may be a first criterion to compare the
results. In this work, we focus on the complexity of the optimal (minimum
number of parts) decomposition problem. In the 2D case, it has been shown
that the minimum decomposition of a digital curve into digital line segments
can be computed in linear time [7].

Preprint submitted to Elsevier 5 November 2007

Fig. 1. The decomposition of a surface into DPS is the key step to obtain a reversible
polyhedrization of the object.

In the 3D case, the boundaries of 3D objects define surfaces for which many
decomposition algorithms have been proposed [8,9,5,6], offering comparisons
on the number of digital plane segments recognised by different algorithms.
Nevertheless, no optimality results exist, and no complexity study has been
carried out.

In computational geometry, the decomposition of a shape (e.g. a polygon)
into a minimum number of elements (e.g. convex polygons) usually leads to
NP-complete problems [11]. A problem is in the NP class of algorithms if it
can be solved in polynomial time by a non-deterministic machine [12]. As a
corollary, the problem is in NP if a solution to the decision problem can be
verified in polynomial time on a deterministic machine. A problem is said to be
NP-complete if it is at least as difficult as any NP problem. In other words, if
a problem is NP-complete, a conjecture is that no time efficient solution exists
to solve it. The remaining option is to consider approximation algorithms with
heuristics.

2 Problem statement

Prior to a complexity study, the problem has to be formalised. In the sequel,
we consider 6-connected sets of voxels whose surface S is defined as the set
of object voxels sharing a face with the background. Such a definition of the
object surface may seem to be simple but many topological results can be de-
rived [2]. The surface is a set of 18-connected voxels, and digital naive planes
[13,14,2,3] are used for the decomposition. More particularly, we consider digi-
tal plane segments (DPS for short), which are 18-connected sets of voxels that

2

belong to the same digital naive plane. A decomposition of a surface into DPS
consists in a labeling of all the surface voxels with a DPS tag. In the frame-
work we consider, a voxel belongs to exactly one DPS of the decomposition.
A DPS P is maximal on a given 18-connected surface if any surface voxel v

18-connected to P is either already labeled or such that P ∪ v is not a DPS.

Related results have been recently proposed in [10] concerning the NP-
completeness of the construction of an integer lattice polyhedron P with min-
imum number of convex facets such that P ∩ Z3 corresponds to the input 3D
digital object. Even if the final objective of the DPS segmentation is to con-
struct a polyhedral representation of the binary object (see Figure 1), we focus
here on the segmentation step. Furthermore, the reduction presented in [10] is
based on the NP-completeness of the decomposition of a polygon with holes
into a minimum number of convex polygons (see below). In our framework,
we do not have such a restriction.

In the following, we consider the decompositions resulting from a sequential
decomposition algorithm, generically defined in Algorithm 1.

Algorithm 1 Sequential decomposition of a discrete surface S into DPS

1: choose a voxel on S; this voxel is called a seed;
2: construct the maximal DPS iteratively adding voxels that are 18-

connected to the DPS initialised with the seed and label these voxels;
3: choose an unlabeled voxel on S as a new seed and repeat from step 1 until

all the voxels of S are labeled.

In this algorithm, both the propagation process during the DPS growing and
the seeds initialisation may change the final resulting decomposition. We now
have all the elements to define the optimisation problem we consider:

Min-DSD (Minimum Digital Surface Decomposition): Given a digital object
surface S, find a decomposition of S into a minimum number of maximal digital
naive plane segments using Algorithm 1 .

In order to study the complexity of an optimisation problem, the related de-
cision problem has to be considered:

λ-DSD: Given a digital object surface S and a number λ ∈ N∗, does there
exist a decomposition of S into λ maximal digital naive plane segments using
Algorithm 1?

In this article, we prove that λ-DSD is NP-complete whatever the propagation
heuristic. Furthermore, the only requirement on the DPS topology is connec-
tivity.

To prove that a problem P is NP-complete, a classical scheme is to exhibit
a polynomial reduction of any instance of a classical NP-complete problem,

3

denoted PNP into an instance of P. Then, we have to prove that a solution
of P also leads to a solution of PNP . Since PNP is known to be NP-complete,
we could conclude that P is also NP-complete [12]. In the literature, the
Boolean Satisfiability Problem (SAT) is a decision problem classically used
in complexity theory since it was the first known NP-complete problem. An
instance of SAT is a boolean expression written using only boolean operators
and, or and not, literals (positive or negative instance of a boolean variable)
and parentheses. The decision problem is: given an expression, is there an
assignment of the variables such that the expression is true ? The problem
remains NP-complete even if the expression is written in conjunctive normal
form with three literals per clause, yielding the 3-SAT problem. An expression
φ has the form:

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x4 ∨ x5) ∧ (¬x6¬ ∨ x3 ∨ ¬x5) ∧ . . . , (1)

where each xi is a binary variable (and ¬xi its negation) that can appear
several times in the expression.

In the following we define a polynomial reduction of any instance φ of the
3-SAT problem to an instance of the λ-DSD problem. This reduction consists
in defining a discrete object surface S(φ) and a value λ(φ) such that the ex-
pression φ is satisfiable if and only if S(φ) can be decomposed into at most
λ(φ) DPS. The construction process, defining geometrical objects for vari-
ables, literals (instance of a variable in the boolean expression) and clauses,
is presented in Section 3, while the NP-completeness proof derived from this
construction is given in Section 4.

3 A Geometric Model for 3-SAT

Given a 3-SAT expression φ, we show how to construct a geometric discrete
object. This construction is a two step process: after defining geometric objects
for variables, literals and clauses, we see how these basic components are
organised and connected together in the 3D space.

3.1 General Considerations

Any instance of the 3-SAT problem can be represented by a bipartite graph
as depicted in Figure 2. The reduction from 3-SAT to λ-DSD we propose
involves the construction of a digital geometric embedding of any graph of
3-SAT. Three geometric objects (called gadgets) must be defined to represent
the nodes of the graph (variables and clauses in the boolean expression) and

4

the edges of the graph (literals in the boolean expression). We use the term
“gadget” to name these objects, following the classical vocabulary of NP-
completeness proofs for geometric problems:

Definition 1 We call v-gadgets, c-gadgets and l-gadgets the digital objects
encoding respectively variables, clauses and literals of a 3-SAT expression.

a b c d

Clauses

Variables

Fig. 2. Graph representation of the 3-SAT boolean expression
(¬b ∨ a ∨ c) ∧ (¬a ∨ ¬d ∨ b): positive literals are represented with black
edges and negative ones with dotted edges.

A key point of the reduction from 3-SAT to λ-DSD is that the number of DPS
needed to decompose the object surface has to be perfectly defined. To do so,
we define the notion of incompatible sets which enables an exact counting of
the DPS:

Definition 2 Given the surface of discrete object, two sets of surface voxels
S and S ′ are said to be incompatible if for all x in S and for all y in S ′, x

and y cannot be part of the same DPS.

n sets of voxels are said to be incompatible if they are pairwise incompatible.
Thus, if n incompatible sets can be defined on a given surface, at least n DPS
are required to decompose the surface.

Moreover, we set up a common scheme for the construction of all the gadgets,
which are composed of two main parts:

• idle part: the surface of this part is made of planes parallel to the axis planes
and only aims at defining a 6-connected object. The minimum number of
DPS needed to cover the idle part is fixed for each gadget, and thus does
not play any role in the optimisation of the total number of DPS needed to
decompose the whole surface. This part is not used in the encoding of the
3-SAT expression;

• active part: this part consists of the remaining voxels after the decom-
position of the idle part. It takes advantage of digital planes properties to
geometrically encode a 3-SAT expression.

5

For each gadget, we provide an illustration 1 of incompatible sets that can be
defined on the surface. Moreover, we also give illustrations of active and idle
parts of the surface. These figures aim at helping the reader in the understand-
ing of the proof. By construction, a DPS cannot cover both active and idle
voxels. A DPS which contains active (resp. idle) voxels is called active DPS
(resp. idle DPS). Surface voxels that are neither active nor idle are neutral
and can be labeled by any type of DPS. They do not play any specific part in
the decomposition of the surface.

The underlying basic idea for this construction is the following: the decomposi-
tion of a v-gadget generates a “signal” sent to c-gadgets through l-gadgets that
represent literals. For each c-gadget, the minimum decomposition is such that
at least one of the three incoming l-gadgets carries a “true” signal. This kind
of geometric construction of 3-SAT is a classic way to prove NP-completeness
of geometric problems (see [15,16] for instance).

Fig. 3. Illustration of a DPS(7, 17, 57, 0). Each intersection between such a DPS and
a plane parallel to the axis grid is a digital straight line.

In the following, we consider digital naive plane segments DPS(a, b, c, µ) de-
fined as connected sets of voxels satisfying (see Figure 3):

0 ≤ ax + by + cz + µ < max(|a|, |b|, |c|) (2)

with a, b, c and µ ∈ Z [13,9,2]. We also introduce the notation r(P) =
ax + by + cz + µ for a point P (x, y, z). This analytical definition of DPS is of

1 Most illustrations of this paper are originally colour artworks. To make the un-
derstanding of the paper easier from B&W printings, colour images are available on
http://liris.cnrs.fr/isabelle.sivignon/SatDSD.html

6

help to prove some structural properties of DPS we use in the NP-completeness
proof. These properties are set forth here for DPS with 0 ≤ a ≤ b < c, but
simple permutations can be done to generalize them (Figure 4):

Proposition 3

• Consider two voxels P and Q and a 3D 18-connected curve C linking P and
Q. We consider the four following configurations (see Figure 4 (a)-(d) for
illustrations):
(a) P (x, y, z), Q(x + 2k + 2, y, z − 2) and C = {(x + i, y, z − 1) | 1 ≤ i ≤

k} ∪ {(x + i, y, z − 2) | k + 1 ≤ i ≤ 2k + 1} ;
(b) P (x, y, z), Q(x + 2, y, z) and C = {(x + 1, y, z + 1)} ;
(c) P (x1, y1, z), Q(x2, y2, z) and C = {(x1+ i, y1, z−1) | 1 ≤ i ≤ k}∪{(x1+

k, y1 + i, z − 1)|1 ≤ i ≤ y2 − y1} ∪ {(x, y2, z − 1)|x + k ≤ x < x2} ;
(d) P (x, y, z), Q(x + k, y, z + 2) and C = {(x, y + 1, z + 1)} ∪ {(x + i, y +

2, z + 1)|0 ≤ k} ∪ {(x + k, y + 1, z + 1)}.
Then, one DPS cannot simultaneously cover all the voxels of C, P and Q.
But there exist DPS that contain P and C or Q and C.

• (e) Consider three voxels P (x1, y, z), Q(x2, y, z−1) and R(x3, y, z) such that
x1 < x2 < x3 (see Figure 4(e)). Then P , Q and R cannot be labeled by one
DPS, but any pair can.

• (f) Consider three voxels P (x, y, z), Q(x+1, y, z) and R(x+1, y, z +1) (see
Figure 4(f)). Then P , Q and R cannot be labeled by one DPS.

These six properties remain true for any permutation of x, y and z coordinates.

PROOF. The proofs of these properties directly ensue from structural or
arithmetical properties of digital nave planes. For configurations (a) to (d),
there exist DPS that contain P and C or Q and C. Thus we only focus on the
non-existence of a DPS covering simultaneously cover all the voxels of C, P and
Q. We provide either adequate references when the proofs are straightforward
or extensive proofs for more complicated configurations.

(a) In this configuration, the main point is that P ∪Q∪C contains a step (i.e.
connected set of voxels with fixed y and z, in this example) of length k

and a step of length k + 2. It is a well known property that digital planes
only contain steps of length k and k + 1 [13,9,2]. Thus a DPS containing
P and C cannot contain Q and conversely.

(b) Consider the projection of this set of voxels on (0xz). Then, if the set of
voxels were part of a DPS, then its projection would be part of a digital
straight segment [13,2]. But two chain codes that differ by 2 define this
projection, which proves that it cannot be a digital straight segment [1].

(c) Let us denote P (x1, y1, z), P ′(x1 + 1, y1, z − 1), Q′(x2 − 1, y2, z − 1) and
Q(x2, y2, z). Suppose that there exist a DPS P(a, b, cµ) containing P , P ′,

7

Q and Q′. We have −c < r(P ′)− r(P) = −c+a < c, which implies a > O

and −c < r(Q) − r(Q′) = c + a < c, which implies a < 0, and leads to a
contradiction.

(d) Suppose that there exist a DPS P(a, b, cµ) containing both P and Q.
Then, on the x-axis, P contains a step of length l ≤ k − 1 at height z + 1
between P and Q . However, by definition, the set C contains a step of
length k + 1. We conclude using the same argument as in (a).

(e) Again, any pair of points can be labeled by one DPS. The proof that
there does not exist a DPS containing all three points is easy using similar
arguments as in (c).

(f) The DPS we are considering in the paper are naive DPS, that are by
definition functional along one axis (z in the case 0 ≤ a ≤ b < c). Thus,
Q and R cannot belong to a common DPS.

In the following, we refer to these configurations as Proposition 3(a), (b), (c),
(d), (e) and (f).

(a)

k + 2

k

(x, y, z)

(x + 2k + 2, y, z − 2) (b)
(x + 2, y, z)

(x, y, z)

(c)

(x1, y1, z) (x2, y2, z)

(x, y1, z − 1)

(x, y2, z − 1)

x

y
z

(d)

k + 1

(x + k, y, z + 2)

(x, y, z)

(e)

(x3, y, z)
(x2, y, z − 1)

(x1, y, z)

(f)
(x, y, z)

(x + 1, y, z + 1)

Fig. 4. Six configurations used for the reduction process

3.2 Encoding Variables: v-gadgets

In this section, we provide a constructive description of a v-gadget in order
to give an hint on the underlying idea behind the reduction we propose. The
definitions of c-gadgets and l-gadgets will be shorter since the principle is
basically the same. In the following, we denote la(gadget) the length of a
given gadget along the axis a ∈ {x, y, z}.

Formally, the v-gadget representing a variable is the set of voxels defined by
(up to translations):

8

{(x, y, z)|0 ≤ x < 5, 0 ≤ y < ly(v-gadget), 0 ≤ z < 6} ∪

{(x, y, z)|x = 2, 0 ≤ y < ly(v-gadget), z = 6}

Thus, the lengths lx(v-gadget) and lz(v-gadget) are constant whereas
ly(v-gadget) depends on the number of literals of the variable (see below).
The set of voxels {(x, y, z)|x = 2, 0 ≤ y < ly(v-gadget), z = 6} is referred as
the “bump” in the following.

From Proposition 3(b) and (f), seven pairwise incompatible sets can be de-
fined on the surface of this object (see Figure 5(a)): one for each side on the
parallelepiped (except the upper side) plus two for the upper side which is
divided in two by a central “bump”. The decomposition of this surface into
DPS requires exactly seven DPS, obtained choosing a seed per incompatible
set. Depending on the order in which the seeds are considered, many minimum
decompositions exist. Nevertheless, only two minimum decompositions have
an influence on the total number of DPS required to decompose the surface
of the whole object. Indeed, we define the idle part of the v-gadget as the
five sides of the parallelepiped different from the upper side, and the active
part as the remaining voxels after the decomposition of the idle part into DPS
(see Figure 5(b)). There are only two minimum decompositions of the active
part, and in the global construction, v-gadgets are linked to other gadgets
of the construction such that these only two different decompositions of the
v-gadgets surface act upon the minimization of the total number of DPS.

These two configurations are depicted in Figure 5(c) and (d): the “bump” vox-
els are either labeled by the left or the right DPS. Actually, any other decom-
position is neither optimal nor composed of maximal DPS. Indeed, since our
algorithm (see Algorithm 1) is sequential, the “bump” cannot be half-covered
by both the left and the right DPS. We set that these two decompositions
respectively encode true (Figure 5-(c)) and false assignments (Figure 5-(d)) of
the variable.

v-gadgets are linked to c-gadgets thanks to wires (l-gadgets) that are con-
nected as illustrated in Figure 6. Figure 6(a) is an illustration of the incom-
patible sets we can define on the surface of this object: note that the five
incompatible sets of the parallelepiped sides are preserved, and that one of
the two upper incompatible sets is extended along the l-gadget.

The first part of these l-gadgets, described in details in Section 3.4, aims at
generating a “signal” encoding the assignment of the variable. This is where
we take advantage of the two decompositions defined previously (see Figure
6) and of Proposition 3(a). Indeed, using the terms of Proposition 3(a), the
bump contains the point P , the right-most voxel of the l-object (circled on
Figure 6(b) and (c)) stands for point Q and the incompatible set in between
contains the curve C. In the case of a true assignment, since the bump is not

9

x

yz

(a) (b)

z

x

y

(c)

z

x

y

(d)

Fig. 5. Illustration of a v-gadget: (a) general view with incompatible sets, (b) idle
(dashed) and active (outlined) areas, (c) true assignment, (d) false assignment

labeled by the DPS on the right, the right-most voxel of the wire (circled on
the figure) can be labeled by this DPS. On the contrary, in the case of a false
assignment, with the same number of DPS, this voxel is not labeled.

To sum up, in this construction, with a fixed number of DPS, the true as-
signment of the variable labels on more voxel than the false assignment. This
signal is then “sent” to clause objects (see Section 3.4.1 for the transmission
process).

(a)

x

y

z

(b)

x

y

z

(c)

Fig. 6. Generation of a “signal” according to the variable assignment: (a) general
view of the v- l-gadgets plugging area with incompatible sets, (b) when the variable
is set to true, the voxel circled in red is labeled by a DPS of the v-gadget, (c)
otherwise, this voxel cannot be labeled by one DPS of the v-gadget. (Proposition 3
(a))

For a positive literal, the l-gadget is connected to the v-gadget on the right-
hand side of the v-gadget, as depicted on Figure 6: the signal corresponding
to the value of the variable is generated. For a negative literal, the l-gadget
is connected on the left-hand side of the v-gadget: in this case, the signal
corresponding to the negated value of the variable is generated (see Figure 7).

Finally, and to handle multiple instances of the same variable in a boolean
expression, the length ly(v-gadget) depends on the maximum number of posi-
tive or negative literals of a variable in the boolean expression, so that all the

10

connections can be made (see Figure 7). Note that the construction is such
that the length of the v-gadget does not change the optimal number of DPS
required for the decomposition (in particular, the side of the parallelepiped
where the l-gadgets are plugged still contains only one incompatible set, and
can be labeled with one DPS only).

x

y
z

Fig. 7. Illustration of a variable with multiple instances, 2 positive literals and a
negative one

3.3 Encoding Clauses: c-gadgets

A c-gadget is depicted in Figure 8. It is composed of a transversal rectangular
parallelepiped of size 8 × 21 × 3 on which three terminals are plugged. Since
each clause has three literals (recall that 3-SAT is considered), each c-gadget
has three incoming l-gadgets, which are plugged on these terminals in the
global construction. Idle and active parts are depicted in Figure 8(a). Note
that the idle part of the terminals is not examined here, and will be studied
with l-objects (Section 3.4). Thanks to Proposition 3(f), six incompatible sets
are defined on the surface of this object (see Figure 8(b)): five on the idle part,
and one on the active part. The whole idle part can be labeled with five DPS
(see Figure 8(c)).

The active part (see Figure 8(a)) of a clause is designed such that it can
be entirely labeled by a single DPS, except one out of the three terminal
extremities (see Figure 8(c)). First, note that the incompatible set included in
the active part (actually defined by the whole active part without the terminal
extremities) is composed of steps of length 5 or 4 along z axis and can be
labeled by a DPS of parameters (5, 0,−1, µ) for instance. Next, the terminal
extremities are denoted by P , Q and R following the terms of Proposition
3(d): all three voxels cannot be labeled by a single DPS whereas any couple
can be entirely labeled by a single DPS. All in all, the active part plus two
out of the three points P , Q and R (but not three) can be labeled by a single
DPS.

11

The l-gadgets are plugged onto the c-gadgets terminal extremities such that
the last voxels of a l-object are the terminal extremities. This plugging enables
the transmission of the signal carried by l-objects (see Section 3.4). Basically,
if one terminal extremity can be labeled by a DPS of the l-gadget, then only
one DPS is required to cover the clause active part. Otherwise, two DPS are
necessary.

In a nutshell, the link between a boolean clause and the geometric object we
propose can be drawn up as follows: a boolean clause is true if and only if at
least one literal is true; the active part of a c-gadget can be labeled by one
DPS if and only if at least one of the three terminal extremities is labeled by
a l-gadget DPS.

(a) (b)

P

Q

R

(c)

Fig. 8. Illustration of a c-gadget: (a) idle (dashed) and active (outlined) parts, (b)
incompatible sets and (c) decomposition into DPS

To end with the geometrical objects encoding variables and clauses, Figure
9 illustrates how these objects are put together in the 3D space: v- and c-
gadgets are lined up on two axis parallel to the y axis. The definition of
l-gadgets connecting v-gadgets to c-gadgets relies on this spatial construction.
In the following, we denote distv the distance between two variables, distc
the distance between two clauses and distvc the distance along the x-axis
between variables and clauses These quantities are constant for the rest of the
construction and do not depend on the boolean expression φ.

Fig. 9. Positions of four v-gadgets and two c-gadgets in the 3D space

12

3.4 Linking Variables and Clauses: l-gadgets

v-gadgets are connected to c-gadgets through l-gadgets, that represent literals:
if a variable appears in a clause, a l-gadget links the gadgets of this variable
and this clause. These l-gadgets aim at “transmitting” the truth assignment of
a variable to the clause it belongs to. Since positive and negative literals have
to be considered, we define positive and negative l-gadgets. Before defining
them, we describe the transmission process.

3.4.1 Transmission process

Figure 10 illustrates how the truth assignment of a variable is transmitted to
a clause through a positive l-gadget. This figure represents a vertical cut of
the active part of a v-gadget, a l-gadget and a c-gadget terminal. Figure 10(a)
illustrates the propagation of a true value while Figure 10(b) shows how a
false value is transmitted to a clause. From the construction we propose, the
vertical cut of the connection of v-, l- and c-gadgets can be thought of as a
2D digital curve that we decompose into digital straight segments, using their
properties.

We call “transmission voxels” the two voxels named A and D in Figure 10,
intermediate transmission voxels are named B and C. We consider an optimal
decomposition of the surface into DPS. The transmission voxel A actually
corresponds to the generation of the signal encoding the truth assignement
of the variable (see Figure 6 for a 3D representation of a v-gadget and a
“plateau”). Using Proposition 3(a) and (c), if A is labeled by a v-gadget DPS,
then D (which is at the same time an extremity of a clause terminal) is labeled
by a l-gadget DPS. On the contrary, if A is not labeled by a v-gadget DPS,
then D is not labeled by a l-gadget DPS. Note that for the plateau, descent
and ascent parts, the relative length of the steps are the key point of this
transmission process: for instance, a single DPS cannot cover both A and B

(Proposition 3(a)).

Since the voxel A is labeled by a v-gadget DPS if and only if the literal value
is “true” (see Section 3.2), the c-gadget terminal extremity, i.e the voxel D,
is labeled by a l-gadget DPS if and only if the literal value is ”true”.

3.4.2 Geometric construction

Following the spatial arrangement of v- and c-gadgets (see Figure 9), and the
rules defined for the connections of negative and positive literals (Section 3.2),
positive l-gadgets are plugged on the v-gadgets side closest to c-gadgets, while
negative l-gadgets are plugged on the opposite side. We see that in the case

13

Plateau

Shift

C
lause

A
scent

Variable

z

x

D
es

ce
nt

A

B C

D

(a)

Plateau

Shift

C
lause

A
scent

D
es

ce
nt

Variable

A

CB

D

(b)

Fig. 10. Vertical cut illustration (active part only) of the transmission of a truth
assignment through a l-gadget: (a) the value “true” is transmitted; (b) the value
“false” is transmitted

of a negative l-gadget, a U-turn towards c-gadgets is required.

In order to ensure that the “signals” are correctly sent from v-gadgets to c-
gadgets, the l-gadgets must not intersect each other. To do so, and as depicted
in 2D in Figure 10, l-gadgets are basically composed of four parts, that are
depicted in 3D in Figure 11(a) for a positive l-gadget:

• a plateau generates the “signal” corresponding to the truth assignement of
the variable;

• a descent to a given level L: two distinct literals descend on two different
levels to ensure an intersection free construction (note that the number of
different levels is exactly the number of positive and negative l-gadgets);

• a shift movement on the level L to reach the c-gadget position;
• an ascent from the level L to the c-gadget terminal extremity.

First, incompatible sets can be defined on the surface as depicted in Figure
11(b) for a positive l-object and in Figure 11(e) for a negative one. These
incompatible sets are defined using the configurations of Proposition 3:

• (f) is used to define the incompatible sets of the idle part;
• (a) is used to define the incompatible sets between A and B, and C and D

respectively;
• (d) enables to define the incompatible set between B and B′ for negative

l-gadgets;
• (c) enables to define the incompatible sets between B and C for positive

l-gadgets, and B′ and C for negative ones.

All put together, 11 incompatible sets (eight for the idle part, three for the
active part) are defined for each positive l-gadget and 17 (13 for the idle part,
four for the active part) for each negative l-gadget (see Figure 11(b), (c) and
(d)).

14

(a)

B

A

D

C
(b)

(c) (d)

A

B

C

D

B’

(e) (f)

Fig. 11. l-gadget between a v- and c-gadget: (a) positive l-gadget with plateau,
descent, shift and ascent part; (b) incompatible sets for a positive l-gadget; (c)-(d)
(c) minimum decompositions of the descent and ascent parts; (e) incompatible sets
for a negative l-gadget; (f) minimum decomposition for a negative l-object.

Next, we study one part after the other and simultaneously count the number
of DPS required to decompose the surface of a l-object. We show that this
number equals the number of incompatible sets.

The plateau has already been briefly presented in Section 3.2. In the total
counting, its decomposition requires only one DPS for the idle part (bottom of
the plateau): indeed, the sides are labeled with descent idle DPS, and the upper
part (active) is labeled by a DPS coming from the v-gadget decomposition (see
Section 3.2).

Concerning the descent and ascent, the active part is a three steps surface
such that the first step is k voxels long (k ≥ 3), the second one is k − 2

15

voxels long and the third one is made of one voxel. Using Proposition 3(a),
this configuration enables the propagation of the “signal” (see Section 3.4.1
and Figure 10, between A and B). Moreover, the parameter k is used to
ensure that every l-gadget descend on a different level so that l-gadgets do
not intersect. For an illustration of multiple l-gadgets in 3D, see Figure 13.
The decomposition of the ascent and the descent requires (see Figure 11(c)-
(d)):

• seven idle DPS: 2 × 3 for the sides of the descent and ascent part plus a
common one for the bottom part;

• two active DPS to decompose the “steps” of the ascent and descent parts.

In the case of a positive l-gadget, the shift part is a flat surface and only one
DPS is needed to cover it (the bottom part is labeled by the same DPS as for
descent and ascent parts). Note that, at this point, the transmission of the
“signal” is ensured thanks to Proposition 3(c) with the voxels denoted by B

and C and the curve defined by the incompatible set linking these points (see
Figure 11(b) and Figure 10).

The shift is trickier in order to ensure that the minimum number of DPS nec-
essary to decompose its surface remains independent on the relative positions
of the v- and c-gadgets it links. Indeed, suppose that the shift is flat as for
positive l-objects. On one hand, if the c-gadget position along y axis is smaller
than the position of the v-gadget, then one DPS cannot cover the voxel A and
the active part of the shift. On the other hand, if the c-gadget position along
y axis is greater than the position of the v-gadget, one DPS covers A and the
active part of the shift. To elude this problem, we resort to two tricks: first,
the level of the shift part is heightened by 2, and a “bump” pointed out by B′

in Figure 11(e) is added: Proposition 3(d) used with the voxels B and B′ and
the incompatible set between them tells us that B and B′ cannot be labeled
by the same DPS on this surface. Proposition 3(c) is then used with the voxels
B′ and C to ensure that two DPS are required to decompose the active part
of the shift, and that the transmission process still works: C is labeled by a
shift DPS, if and only if B is labeled with a descent DPS. Altogether, seven
DPS are required to decompose the surface of a negative l-gadget shift.

To sum up, 11 and 17 DPS are enough to decompose the surface of a positive
l-object and a negative one respectively.

3.5 Summary of the Construction

To summarise the construction, we have proposed a polynomial reduction of
any instance of the 3-SAT problem into an instance of the k-DSD problem.
This reduction is based on the definition of v- and c-gadgets encoding variables

16

and clauses respectively. These objects are linked together through l-gadgets
which pass the truth value of a variable on to clauses.

More precisely, for each geometrical object, we have defined incompatible sets
such that we can exactly control the minimum number of DPS required to
cover the overall objects. Indeed, using orientation properties of DPS (Propo-
sition 3-(f)), we have defined incompatible sets for the so called idle part of
the objects which do not interfere with the overall decomposition of the active
parts. The active part is used to encode the truth assignments of the variables
and to transmit them to clauses, with the help of arithmetical properties of
DPS (Propositions 3-(a)-(d)). Moreover, note that the incompatible sets were
defined independently for each gadget, but that they remain incompatible all
together.

Finally, as illustrated in Figures 12 and 13, we have an embedding of any 3-
SAT instance φ into a discrete object. We prove in the following section that
there is a mapping between the decomposition of the object into λ digital
planes and the assignment of the φ expression variables that satisfies φ.

4 NP-Completeness Proof

Let us consider a boolean 3-SAT expression φ, its corresponding digital object
and S the digital surface of this object. We denote |C|, |V |, p and n the number
of clauses, variables, positive literals and negative literals in φ respectively.

Proposition 4 λ-DSD is in NP.

PROOF. Given a digital surface S and a solution D, verifying that |D| ≤ λ

and that it actually covers all the voxels of S is done in linear time in the
number of voxels S. Moreover, verifying that D is actually composed of DPS
is also done in polynomial time since checking that a set of voxels is a DPS
can be done in polynomial time [3].

Proposition 5 The size of S is polynomial in the size of φ.

PROOF. For a given 3-SAT expression φ, the discrete object we define is
included in a bounded box the size of which depends on the size of φ. More
precisely, we have the following upper bounds on the side length of the bound-
ing box B:

• the size of B along the x axis is fixed and is equal to lx(c-gadget)+ distvc +
lx(v-gadget)+ lx(descent of negative l-gadgets), where distvc is the distance

17

along x axis between v-gadgets and c-gadgets. All these values are indepen-
dent of the size of φ. v-gadget

• the size of B along the z axis depends on the lowest level of the w-gadgets.
If we number the clauses from 0 to |C| − 1 and the literals of each clause
from 0 to 2, we define the level of the literal number j in clause number
i by 8 + 4(3 ∗ i + j) + 4. 8 is the minimum height we set for the descent
part of the first l-gadget, the height increment between two successive l-
gadgets is 4, and we set the vertical width of the shift part of the l-gadgets
to 4. Consequently, the maximum height of l-gadgets is 12(|C| + 1). Since
lz(v-gadget) and lz(c-gadget) do not depend on the size of φ, the size of B

along the z axis is linear in the number of clauses.
• the size of B along the y axis is the maximum of the two following values:
· |C|× ly(c-gadget)+(|C|−1)distc, where distc is the distance between two

c-gadgets. ly(c-gadget) and distc do not depend on the size of φ, such that
the sum is linear in the number of clauses |C| of φ.

· |V |× ly(v-gadget)+(|V |−1)distv, where distv is the distance between two
v-gadgets. distv is a fixed value, independent on the size of φ. ly(v-gadget)
depends on the maximal number of occurrences of the variables. Indeed,
the size of a v-gadget along y axis changes according to the number of l-
gadgets that have to be plugged. However, the maximal number of occur-
rences of a variable is bounded by 3|C|. Similarly, the number of variables
is also bounded by 3|C|. Thus, the sum depends on |C|2.

All in all, the size of the bounded box of our construction is in O(|C|2).

We shall now prove that the construction is a reduction of 3-SAT to λ-DSD,
i.e. that the expression φ is satisfiable if and only if S admits a decomposition
with at most λ maximal DPS. We prove the two implications one after the
other.

Lemma 6 If the expression φ is satisfiable, then S admits a decomposition
with λ maximal DPS.

PROOF. Assume that φ is satisfiable under some truth assignment T . The
following algorithm builds a decomposition of the surface of S into λ maximal
DPS:

(1) label all the voxels belonging to an idle DPS regardless of T : 5|V |+5|C|+
8p + 13n DPS are used to cover the entire idle part of S;

(2) decompose each v-gadget according to its truth assignment in T : these
decompositions require 2|V | DPS;

(3) use 3p and 4n DPS to decompose the l-gadgets active parts, which may
leave the tips of some l-gadgets (which are also the c-gadget terminal
extremities) unlabeled;

18

(4) since T satisfies φ, every c-gadget has at least one incoming l-gadget
with a labeled tip. Thus, every c-gadget has at least one labeled terminal
extremity. Consequently, each c-gadget active part can be labeled with
one single DPS.

All in all, (5|V |+5|C|+8p+13n)+2|V |+3p+4n+|C| = 7|V |+6|C|+11p+17n
DPS are used in this decomposition. In the following, we set λ = 7|V |+6|C|+
11p + 17n.

In order to prove the reverse implication, we need to show that there is only one
way of decomposing S into λ DPS according to Algorithm 1. Next, we show
that this unique solution leads to a satisfactory assignment of φ’s variables.

Lemma 7 Consider a decomposition of S with λ DPS using Algorithm 1.
Then the decompositions of v-gadgets, positive and negative l-gadgets, and c-
gadgets surfaces are respectively composed of 7, 11, 17 and 6 DPS.

PROOF. The proof of this lemma is based on the incompatible sets defined
on the surface. Indeed, since respectively 7, 11, 17 and 6 incompatible sets can
be defined on the surface of v-gadgets, positive l-gadgets, negative l-gadgets
and c-gadgets respectively, at least 7, 11, 17 and 6 DPS are required to de-
compose each gadget respectively. All in all, 7|V | + 6|C| + 11p + 17n = λ

DPS are required. This means that if an extra DPS is used to decompose any
gadget surface, then the total number of DPS used to decompose the surface
is strictly greater than λ.

Lemma 8 If S admits a decomposition into λ maximal DPS using Algorithm
1, then φ is satisfiable.

PROOF. Suppose that S admits a decomposition D with λ DPS. Since |D| =
λ, from Lemma 7 the decomposition of every v-gadget is made of seven DPS.
v-gadgets can only be decomposed two ways into seven DPS, each of which
encodes a truth assignment. This decomposition is made of 5 DPS for the idle
part and 2 DPS for the active part (regardless of the sequential algorithm
used). Thus, covering all v-gadgets requires 7|V | DPS. In the same way, using
Lemma 7 covering l-gadgets uses 11p + 17n DPS. All in all, λ− 7|V | − 11p−
17n = 6|C| DPS remain for covering c-gadgets. The idle part of c-gadgets
requires 5 DPS regardless of the rest of the decomposition. Thus |C| DPS
remain to cover the c-gadgets active parts. Since there are |C| c-gadgets, and
|C| remaining DPS, we know that the c-gadgets active parts are labeled by
one DPS only in D. This is possible if and only if every clause in φ is satisfied,
and thus φ is satisfied too.

19

Theorem 9 λ-DSD is a NP-complete problem.

PROOF. The result is derived from Lemmas 6 and 8.

This theorem proves that the decision problem associated to Min-DSD is NP-
complete. Thus, according to the theory of complexity, Min-DSD is NP-hard.

5 Example

A software that generates a 3D object from a 3-SAT boolean expression is
available on http://liris.cnrs.fr/isabelle.sivignon/code.html. This
program also generates the seeds of the object, and a simple surface decompo-
sition algorithm into maximal DPS is provided to compute the decomposition
derived from those seeds.

Figure 12 is an illustration of the digital surface encoding the expression φ =
(a ∨ ¬b ∨ c). The optimal decomposition into maximal DPS is composed of
49 idle DPS and 17 active DPS. In Figure 12(a), the v-gadgets encode the
assignment (a = true, b = true, c = false), and the optimal decomposition
is represented. In Figure 12(b), the v-gadgets encode the assignment (a =
false, b = true, c = false): in this case, since φ is not satisfied, the optimal
decomposition cannot be achieved, and an extra DPS (in red) is added.

(a) (b)

Fig. 12. Discrete object encoding the expression φ = (a ∨ ¬b ∨ c): (a) optimal
decomposition corresponding to the satisfaction of φ; (b) φ is not satisfied and one
more DPS is required to achieve a complete decomposition

Figure 13 illustrates a more complex example : φ = (a∨¬b∨ c)∧ (a∨ d∨ b)∧
(¬d ∨ ¬c ∨ b). Note that there is no intersection between the l-gadgets.

20

Fig. 13. A more complex example with four variables and three clauses.

6 Conclusion and Future Works

In this article, we have proved that the decomposition of a digital object
surface into a minimum number of maximal DPS using a sequential algorithm
is NP-complete. In our proof, we use octant orientation principles of DPS to
handle object idle parts and DPS arithmetical properties for the active part
of the objects. This theoretical result concludes an important open problem
in the discrete geometry community: no efficient algorithms exist to solve the
Min-DSD problem. A logical consequence of this answer is that only heuristics
can be used.

Among possible heuristics, important theoretical future works exist: does there
exist a polynomial-time approximation scheme for the Min-DSD problem ?
More precisely, is there a polynomial in time approximation of Min-DSD that
produces a solution that is within ǫ factor of the optimal solution ?

The theoretical result is based on a decomposition of a specific discrete ob-
ject. Indeed, by construction of variables, clauses and links, the genus of the
obtained binary object depends on the number of cycle in the 3-SAT instance.
In applications, we usually deal with simpler objects and an important future

21

work concerns the following open question: Is k−DSD still NP-complete, and
thus Min-DSD still NP-hard for simply connected objects ?

References

[1] R. Klette, A. Rosenfeld, Digital straightness - a review, Discrete Applied
Mathematics 139 (1-3) (2004) 197–230.
URL http://dx.doi.org/10.1016/j.dam.2002.12.001

[2] R. Klette, A. Rosenfeld, Digital Geometry: Geometric Methods for Digital
Picture Analysis, Series in Comp. Graph. and Geom. Modeling, Morgan
Kaufmann, 2004.

[3] V. Brimkov, D. Coeurjolly, R. Klette, Digital planarity - a review, Discrete
Applied Mathematics 155 (4) (2007) 468–495.

[4] R. Klette, H. J. Sun, Digital planar segment based polyhedrization for surface
area estimation, in: IWVF, 2001, pp. 356–366.

[5] I. Sivignon, F. Dupont, J. M. Chassery, Decomposition of a three-dimensional
discrete object surface into discrete plane pieces, Algorithmica 38 (1) (2003)
25–43.

[6] I. Sivignon, F. Dupont, J.-M. Chassery, Reversible polygonalization of a 3D
planar discrete curve: Application on discrete surfaces, in: 12th DGCI, 2005,
pp. 347–358.

[7] F. Feschet, L. Tougne, On the min dss problem of closed discrete curves, Discrete
Applied Mathematics 151 (1-3) (2005) 138–153.

[8] J. Françon, L. Papier, Polyhedrization of the boundary of a voxel object, in:
8th DGCI, Vol. 1568 of LNCS, Springer-Verlag, 1999, pp. 425–434.

[9] I. Debled-Rennesson, Etude et reconnaissance des droites et plans discrets,
Ph.D. thesis, Université Louis Pasteur (1995).

[10] V. Brimkov, Discrete volume polyhedrization: Complexity and bounds on
performance, in: Computational Methodology of Objects Represented in
Images: Fundamentals, Methods and Applications, Proc. of the International
Symposium CompIMAGE’06, Taylor and Francis Publisher, Coimbra, Portugal,
2006.

[11] J. E. Goodman, J. O’Rourke (Eds.), Handbook of Discrete and Computational
Geometry, CRC Press, 1997.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, 2nd Edition, MIT Press, Cambridge, MA, 2001.

[13] J.-P. Reveillès, Géométrie discrète, calcul en nombres entiers et algorithmique.,
Ph.D. thesis, Université Louis Pasteur - Strasbourg (1991).

22

[14] E. Andres, R. Acharya, C. Sibata, Discrete analytical hyperplanes, Graphical
Models and Image Processing 59 (5) (1997) 302–309.

[15] C. Worman, Decomposing polygons into diameter bounded components, in:
Canadian Conference on Computational Geometry (CCCG’03), 2003, pp. 103–
106.

[16] B. Chazelle, D. P. Dobkin, N. Shouraboura, A. Tal, Strategies for polyhedral
surface decomposition: An experimental study, in: Symp. on Compututational
Geometry, 1995, pp. 297–305.

23

