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Abstract

Given a Digital Straight Line (DSL) of known characteristics (a, b, µ), we ad-
dress the problem of computing the characteristics of any of its subsegments.
We propose two new algorithms that use the fact that a digital straight segment
(DSS) can be defined by its set of separating lines. The representation of this set
in the Z2 space leads to a first algorithm of logarithmic time complexity. This
algorithm precises and extends existing results for DSS recognition algorithms.
The other algorithm uses the dual representation of the set of separating lines.
It consists of a smart walk in the so called Farey Fan, which can be seen as the
representation of all the possible sets of separating lines for DSSs. Indeed, we
take profit of the fact that the Farey Fan of order n represents in a certain way
all the digital segments of length n. The computation of the characteristics of
a DSL subsegment is then equivalent to the localization of a point in the Farey
Fan. Using fine arithmetical properties of the fan, we design a fast algorithm
of theoretical complexity O(log(n)) where n is the length of the subsegment.
Experiments show that our algorithms are also efficient in practice, with a com-
parison to the ones previously proposed by Lachaud and Said [1]: in particular,
the second one is faster in the case of “small” segments.

Keywords: Digital geometry, Digital straight segment recognition,
subsegment, local convex hull, Farey fan

1. Introduction1

Digital Straight Lines (DSL) and Digital Straight Segments (DSS) have been2

known for many years to be interesting tools for digital curve and shape analysis.3

The applications range from simple coding to complex multiresolution analysis4

and geometric estimators (see for instance [2] for a recent example). All these5

applications require to solve the so called DSS recognition problem. Many6

algorithms, using arithmetics [3], combinatorics [4] or dual-space [5] have been7
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proposed to solve this problem, reaching a computational complexity of O(n)8

for a DSS of length n (see also [6] for an overview).9

When no further information is known, all these algorithms are actually10

optimal. They at the same time decide if the set of grid points is a DSS and11

compute its characteristics (minimal in some sense). However, we sometimes12

know beforehand that the set of grid points is a DSS: the algorithm does not13

need to decide anymore and we can hope for a sublinear-in-time recognition14

algorithm. For instance, this extra information may come from the knowledge15

of the characteristics of a DSL containing the set of grid points. This occurs16

for example in [7] where the multiresolution geometry of a digital object is17

considered. Another example concerns the digitization of a straight segment18

on a grid of given size: we know that the set of grid points is a DSS, but its19

characteristics may be much smaller than the ones of the input straight segment20

(and not greater than the grid size).21

In [7], the authors introduce the following problem: given a DSL of known22

characteristics and a subsegment of this DSL, compute the minimal characteris-23

tics of the DSS. The authors present two algorithms (SmartDSS and ReversedS-24

martDSS) to solve this problem in [7, 8, 1]: both use the decomposition into25

continuous fractions of the DSL slope and reach a logarithmic complexity.26

However, a deeper search in the state-of-the-art shows that this problem27

is not so new. Indeed, in [9], the author presents a quick sketch of a method28

that solves it using the Farey Fan. The announced complexity of the method29

is O(log2 n) for a segment of length n. Much later, the authors of [10], try30

to compute the “reduction” of a straight line, which is a simplification of DSL31

characteristics over a bounded domain. As we will see, this reduction does not32

compute the minimal characteristics, but the idea is similar.33

Our contribution in this paper is to demonstrate that it is possible to solve34

the DSL subsegment problem in logarithmic time complexity revisiting and35

deepening the study of the two state-of-the-art algorithms [9] and [10].36

The first algorithm is based on the local convex hull algorithm developed in37

[10] together with the framework for DSS recognition described in [11], but we38

provide the theoretical results which enable to efficiently compute the minimal39

characteristics of a subsegment from this hull. The second algorithm, detailed40

in Section brings the method introduced in [9] up to date: we investigate it41

further to provide a thoroughly defined algorithm. Moreover, we show how42

its complexity can be lowered to O(log(n)) with an astute use of arithmetical43

properties of the Farey Fan. The latter algorithm was first presented in [12] and44

a more detailed description is provided here.45

Section 2 is dedicated to the presentation of the notions used in this work.46

Section 3 describes the algorithm based on the local convex hull computation.47

The algorithm using the dual representation, and more specifically the Farey48

Fan is detailed in Section 4. At the end of this section, two extensions for49

slightly different frameworks are presented : in particular, we show that the50

second algorithm can be directly and reliably applied when the input data is51

not a DSL but a straight line with non integer parameters. The last section is52

classically devoted to experimental validations.53
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2. Preliminary definitions54

2.1. Digital line, segment and minimal characteristics55

A Digital Straight Line (DSL for short) of integer characteristics (a, b, µ) ∈56

Z3 is the infinite set of digital points (x, y) ∈ Z2 such that 0 ≤ ax − by + µ <57

max(|a|, |b|), with a and b relatively prime [3]. These DSL are 8-connected58

and often called naive. The slope of the DSL is the fraction a
b and µ

b is the59

shift at the origin. In the following, without loss of generality, we assume that60

0 ≤ a ≤ b, such that, on a DSL, there is exactly one pixel for each value of x. In61

this context, it is easy to see that the set of pixels of a given DSL is defined by a62

unique triplet (a, b, µ). The remainder of a DSL of characteristics (a, b, µ) for a63

given digital point (x, y) is the value ax−by+µ. The upper (resp. lower) leaning64

line of a DSL is the straight line ax − by + µ = 0 (resp. ax − by + µ = b − 1).65

Upper (resp. lower) leaning points are the digital points of the DSL lying on66

the upper (resp. lower) leaning lines.67

A Digital Straight Segment (DSS) is a finite 8-connected part of a DSL. It68

can be defined by the characteristics of a DSL containing it and two endpoints69

P and Q. However, a DSS belongs to an infinite number of DSLs. In this70

context, the minimal characteristics of a DSS are the characteristics of the DSL71

containing it with minimal b [13, 1]. Since a DSL is defined by a unique triplet72

(a, b, µ), the values of a and µ are uniquely defined for a given b, and the minimal73

characteristics of a DSS are also uniquely defined.74

Definition 1 (minimal characteristics). Let L = {(a, b, µ) ∈ Z3, 0 ≤ a ≤ b,75

gcd(a, b) = 1}. For a given DSS S, we can define LS = {L ∈ L, the pixels of S all76

belong to the DSL of characteristics L}. Let f : L → Z, f(a, b, µ) = b. Then77

the minimal characteristics of S is the triplet (aS , bS , µS) = arg minL∈LS f(L).78

Note that the notions of leaning points and lines are similarly defined for79

DSSs. DSS recognition algorithms aim at computing the minimal character-80

istics of a DSS, taking profit of the following fact: (a, b, µ) are the minimal81

characteristics of a DSS if and only if the DSS contains at least three leaning82

points [3]. In this case, the minimal characteristics are the characteristics of the83

DSS upper leaning line.84

2.2. Minimal characteristics, separating lines and dual space85

If we consider the digitization process related to this DSL definition, the86

points of the DSL L of parameters (a, b, µ) are simply the grid points (x, y)87

lying below or on the straight line l : ax − by + µ = 0 (Object Boundary88

Quantization), and such that the points (x, y + 1) lie above l. We say that L is89

the digitization of the straight line l. Note that L is also the digitization of all90

the straight lines of equation ax− by + ρ = 0 with µ ≤ ρ < µ+ 1, where ρ ∈ R.91

These lines separate the points X of the DSL from the points X+(0, 1), denoted92

by X (as in [11]), and they are called separating lines. Figure 1(a) illustrates93

the separating lines of a DSL.94
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A similar set of lines can be defined if a DSS is considered. Let us denote95

by X the points of the DSS and by X the points of the DSS translated by the96

vector (0, 1). The separating lines are the lines which are above the upper part97

of the convex hull (upper convex hull for short) of the points X and strictly98

below the lower part of the convex hull (lower convex hull for short) of the99

points X (see Figure 1 for an illustration). Note that the strict constraint on100

the lower convex hull makes this definition slightly different from the classical101

definition in computational geometry. However, geometrically speaking, the set102

of separating lines is also bounded by the critical support lines of the two convex103

hulls. We actually have the property that an 8-connected set of grid points is a104

DSS if and only if its set of separating lines if not empty. This property is used105

in [11, 14] to design a fast linear in time DSS recognition algorithm. Among106

the separating lines, the line with integer characteristics (a, b, µ) with minimal b107

and minimal µ defines the minimal characteristics of the DSS. In the algorithm108

of [11], the points of the DSS are added one by one and the set of separating109

lines is updated accordingly, but the minimal characteristics are not extracted.110

set of points X

set of points X

(a)

set of points X

set of points X

(b)

Figure 1: The separating lines of a DSL(a) and of a DSS (b) are the straight lines lying in
the gray area.

For a DSS of minimal characteristics (a, b, µ), the structure of the set of111

separating lines is perfectly known. Indeed, it is defined by the leaning points of112

the DSS. If Uf (resp. Ul) is the leftmost (resp. rightmost) upper leaning point,113

and Lf (resp. Ll) the leftmost (resp. rightmost) leaning point, then the set of114

separating lines is bounded by the lines (Uf , Ll+(0, 1)) and (Lf+(0, 1), Ul) which115

are the critical support lines, and the lines (Uf , Ul) and (Lf + (0, 1), Ll + (0, 1))116

which are edges of the lower and upper convex hulls respectively. Figure 2(a)117

illustrates this structure.118

The set of separating lines can also be defined in a dual space, also called119

parameter space. In this space a straight line l : αx− y + β = 0 is represented120

by the 2D point (α, β).121

Given a DSS S, a line l : αx− y+β = 0 is a separating line if and only if for122

all (x, y) ∈ S, 0 ≤ αx − y + β < 1. This definition is strictly equivalent to the123

one given previously. The preimage of S is the representation of the separating124

lines in the dual space and is defined as P(S) = {(α, β), 0 ≤ α ≤ 1, 0 ≤ β ≤125

1; | ∀(x, y) ∈ S, 0 ≤ αx− y + β < 1}. As in [9], let us define a ray in this space.126
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Lf

LlUf

Ul

l↑

l↓
lU
lL

(a)

A = l↓∗

B = lU∗

C = l↑∗

D = lL∗

β

α

(b)

Figure 2: (a) DSS of minimal characteristics (1, 3, 1) with its leaning points Uf , Ul, Lf , Ll.
(b) Each vertex of the preimage P(S) maps to a straight line in the digital space. The
vertex B( 1

3
, 1
3

) maps to the upper leaning line, the characteristics of which are the minimal
characteristics of the DSS.

Definition 2 (Ray). Let x and y be two integers. The ray defined by x and
y is defined and denoted as follows:

R(x, y) = {(α, β)|β = −xα+ y}

x is called the slope of the ray.127

Note that x is not the geometrical slope of the ray but its absolute value. In128

the following, the order on the slopes is to be understood as the order on the129

absolute values of the geometrical slopes.130

Given a DSS, any point (x, y) of the DSS induces two linear constraints on131

the preimage: αx − y + β − 1 < 0 and αx + β − y ≥ 0. In other words, the132

preimage is bounded by two parallel rays: it is below the ray R(x, y + 1) and133

above the ray R(x, y).134

This definition enables to prove that the preimage of a DSS is a convex135

polygon with a well-defined structure that is directly related to the leaning136

points and lines defined by its minimal characteristics [9, 15]. Figure 2 from137

[16] illustrates this point. In Figure 2(b), all the rays induced by the DSS pixels138

are depicted as dotted lines. The preimage (in gray) is the intersection of all the139

constraints bounded by the rays. It is for instance well known that the edges140

of a DSS preimage are segments of rays induced by the first and last lower and141

upper DSS leaning points. As a consequence, the preimage of a DSS has either142

three or four edges. Proposition 1 recalls in detail this specific structure.143

Proposition 1 ([16]). Let P(S) be the preimage of S. Let ABCD be the poly-144

gon defined by this preimage, where A is the upper left most vertex, and the145
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vertices are named counterclockwise. Following the notations of Figure 2 we146

have :147

• The vertex B = lU∗ maps to the upper leaning line (Uf , Ul) ;148

• The vertex D = lL∗ maps to the lower leaning line (Lf , Ll) translated by149

the vector (0, 1) in the digital space ;150

• The vertex A = l↓∗ maps to the straight line (Ul, Lf + (0, 1)) ;151

• The vertex C = l↑∗ maps to the straight line (Uf , Ll + (0, 1)).152

Note that point B or D may be on the line (AC). (a, b, µ) are the minimal153

characteristics of S if and only if B = lU∗ = (ab ,
µ
b ) (a and b relatively prime).154

B is called the characteristic point of P(S).155

In the rest of the paper, and especially in Section 4, the edges [AB] and156

[BC] are called lower edges. This dual representation of the set of separating157

lines has also been used to design DSS recognition algorithms with a linear time158

complexity [5, 17].159

2.3. Statement of the problem160

Consider now the following problem:161

Problem 1. Given a DSL L of characteristics (aL, bL, µL) and two points162

P (xP , yP ) and Q(xQ, yQ) of this DSL (with xP < xQ), compute the minimal163

characteristics (a, b, µ) of the DSS S = {(x, y) ∈ L | xP ≤ x ≤ xQ}.164

Some easy cases can be withdrawn rapidly (see [8, 1]): if xQ − xP ≥ 2bL,165

then the DSS contains at least three leaning points of the DSL and the minimal166

characteristics of the DSS are simply equal to (aL, bL, µL).167

For the general case, classical DSS recognition algorithm can obviously be168

used. But the best complexity of such algorithms is linear in the number of169

pixels of the DSS. The aim here is to take profit of the extra information given170

by the DSL that contains the DSS to design a sublinear algorithm. In [8, 1] the171

authors describe two algorithms of logarithmic time complexity to solve this172

problem using continued fractions and a top-down or bottom-up path in the173

Stern-Brocot tree (see for instance [18]). In the following sections, we present174

two new algorithms of logarithmic time complexity to solve this problem. They175

use the two representations of the set of separating lines presented in Section176

2.2 and illustrated in Figure 2. The algorithm of Section 3 uses properties of177

the upper and lower local convex hulls (Figure 2(a)) to compute the minimal178

characteristics, while the algorithm presented in Section 4 takes profit of a strong179

arithmetical structure (in the dual space, see Figure 2(b)) called Farey fan to180

solve the problem. The experimental section will show that our algorithms,181

especially the second one, have a very nice behaviour.182
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3. Fast computation of local convex hulls183

3.1. Rewriting of the problem184

Problem 1 can be rewritten as follows:185

Problem 2. Given a separating line l of characteristics (al, bl, µl) and two186

bounding abscissas xP and xQ such that xP < xQ, find the line of minimal187

characteristics that is separating for the same set of points as l for the grid188

points between xP and xQ.189

In the following, we denote by X the grid points below l on the interval190

[xP , xQ] such that the points X + (0, 1), denoted by X are above l. The points191

X form a DSS by definition.192

We present here two properties that show that the minimal characteristics193

of the DSS can be retrieved from some particular edges of the lower convex hull194

of X and the upper convex hull of X.195

Property 1. Consider the remainder function r(α, β)(x, y) = αx−y+β. Let l196

be a line of slope α and intercept β that is separating for the DSS S of minimal197

characteristics (a, b, µ). If the points of S are denoted by X, then the function198

r(α, β) restricted over the points X reaches its smallest positive value for an199

upper leaning point of S. Similarly, the function r(α, β) reaches its greatest200

value for a lower leaning point of S. Equivalently, if r(α, β) is restricted to the201

points X, it reaches its greatest negative value for a point L+ (0, 1) where L is202

a lower leaning point of S, and smallest value for a point U + (0, 1) where U is203

an upper leaning point of S.204

Proof. If α = a
b , the result is straightforward. Otherwise, if α > a

b , then205

l can be written as a linear combination of l↑ and a line l0 of slope α0 = a
b206

and intercept β0, lying in between lU and lL. This is easy to see in the dual207

space representation and illustrated in Figure 3. If l = (1 − t)l0 + tl↑ where208

t ∈ [0, 1], the remainder function r(α, β) is equal to (1− t)r(α0, β0) + tr(α↑, β↑).209

The smallest positive value of r(α↑, β↑) is equal to 0 and reached for the point210

Uf . Similarly, the smallest positive value of r(α0 = a
b , β0) is reached for all the211

upper leaning points of S, thus for Uf . All in all, the smallest positive value212

of r(α, β) is reached for the point Uf . In the same way, the greatest value of213

r(α0 = a
b , β0) is reached for all the lower leaning points of S, and the greatest214

value of r(α↑, β↑) is reached for the point L′, which concludes the proof when α215

is greater then a
b . The case α < a

b is similar, replacing the line l↑ by the line l↓.216

From this property, we deduce that the grid point closest to l and below or217

on l is an upper leaning point for the DSS minimal characteristics. Similarly, the218

grid point closest to l and above l is the translation by (0, 1) of a lower leaning219

point for the DSS minimal characteristics. These two points are denoted by U220

and L respectively.221

Consider now the upper convex hull of X and the lower convex hull of X.222

Then from 2.2, Proposition 1 and Property 1, the DSS minimal characteristics223
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Lf

LlUf

Ul

l↑

l0
l

(a)

l↓∗

lU∗

l↑∗

lL∗

β

α

l0∗

l∗

(b)

Figure 3: A separating line l of slope greater than a
b

can be written as a linear combination

of l↑ and a line l0.

are given by an edge passing through U or L. This leaves us with four edges to224

check, and the following property is used to conclude.225

Property 2. Consider the two edges e0 and e1 of the upper convex hull of X226

passing through U , and the two edges e2 and e3 of the lower convex hull of X227

passing through L+ (0, 1). We denote by ai
bi

(with gcd(ai, bi) = 1) the slopes of228

these edges. (a, b, µ) are the minimal characteristics of the DSS S if and only229

if (a, b) = (ak, bk) where bk = max(bi), and µ is such that the remainder of the230

DSS (a, b, µ) is equal to 0 on U .231

Proof. From Proposition 1, each edge ei lies on a line that links either (i) two232

leaning points, both upper or both lower translated by (0, 1), of the DSS we are233

looking for, or (ii) one upper leaning point to the translation by (0, 1) of a lower234

leaning point. The minimal characteristics (a, b) are given by an edge of type (i).235

Moreover, at most two out of the four edges may lie on the same line, and since236

there is at most two edges of type (ii), at least one edge is of type (i). If two237

edges are of type (i), they have the same slope. Since we have no information on238

the points of the edges apart from U and L, the slopes are used to discriminate239

between edges of type (i) and edges of type (ii). Indeed, by definition, an edge240

of type (ii) has a shorter period, i.e. a smallest bi than an edge of type (i), which241

concludes the first part of the proof. Once the characteristics (a, b) are known,242

we just use the fact that U is an upper leaning point of the DSS we are looking243

for to compute µ and thus end the proof.244

3.2. Algorithm245

Given a line l and two bounds xP and xQ, Properties 1 and 2 directly lead246

to an algorithm to solve Problem 2 in three steps:247
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1. compute the upper hull of the grid points X - keep the point closest to l248

and its two neighbour edges;249

2. compute the lower hull of the grid points X - keep the point closest to l250

and its two neighbour edges;251

3. among the four edges of slope ai
bi

, the one with maximal bi gives the252

solution.253

The algorithm of [10] offers a fast solution to solve the first two steps. Indeed,254

the authors propose an algorithm of complexity O(log(xQ−xP )) to compute the255

upper and the lower convex hull of the grid points below and above a straight256

line and between a minimal and maximal abscissa.257

In this article, the authors actually mention an algorithm to compute the258

“reduction” of a straight line over a domain defined by a minimal and a maximal259

abscissa. The aim is to reduce the coefficients of a straight line digitized over260

a finite domain. This algorithm is based on the computation of the critical261

support lines of the convex hulls computed by the algorithm. However, the262

“reduction” they compute is not equal to the line of minimal characteristics.263

The first reason is because, as we saw, the critical support lines contain a point264

of X. The second reason is given hereafter and illustrated in Figure 4.265

If there is no grid point lying exactly on l in the interval [xP , xQ] this algo-266

rithm computes exactly the hulls we look for (Figure 4 (a)). However, if there267

exists a point R on l of abscissa xP ≤ xR ≤ xQ, then the lower convex hull268

computed by this algorithm is erroneous for our purpose: indeed, the computed269

lower convex hull of X contains the point R which is a point of X and not a270

point of X (Figure 4 (b)). To solve this problem, we use the fact that, for a271

line l : aLx − bLy + µL = 0 with integer characteristics, there is no grid point272

lying strictly between l and the line l′ : aLx − bLy + µL = 1. The trick is thus273

to compute the lower convex hull of the points X defined by the line l′.274

v1

v2 = v4

v3

v′1
v′2 = v′4

v′3

(a)

R

(b)

v1

v2 = v4 = u

v3

v′1
v′2 = v′4

v′3

(c)

Figure 4: (a) and (b) Illustration of the algorithm of [10]. In (b), the lower convex hull of X
contains a point of X. (c) Modification so that the lower convex hull of X does not contain
a point of X.

As in [10], the upper convex hull of the points X defined by a line l is275

split in two parts: the left part is composed of the edges of slope greater than276

the slope of l, while the right part is composed of the edges of slope lower277

than the slope of l. Then, the computation of the upper convex hull of the278
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points X is completed in two steps, one for each part of the convex hull. Let279

localCHLeftRight(aL, bL, µL, n) be Algorithm 1 of [10] for a line l : aLx−bLy+280

µL = 0 and abscissas in between 0 and n. This algorithm correctly returns the281

left part of the upper convex hull of the points X. From this convex hull, we282

only keep the last two points, the last one being the closest to l.283

Algorithm 1: upperConvexHullOfX(aL, bL, µL, P,Q)

v1, v2 = localCHLeftRight(aL, bL, rP , xQ − xP )1

v1 = v1 + P , v2 = v2 + P
v3, v4 = localCHLeftRight(aL, bL, bL − rQ, xQ − xP )2

v3 = Q+ (0, 1)− v3, v4 = Q+ (0, 1)− v4
The closest point u is equal to v2 or v43

Return V = (v1, v2, v3, v4) removing multiple copies, and closest point u

Algorithm 2: localCHDSLSubsegment(aL, bL, µL, P,Q)

Vinf , u = upperConvexHullOfX(aL, bL, µL, P,Q)1

Vsup = upperConvexHullOfX(aL, bL, bL − rQ − 1, (0, 0), Q− P)2

forall v in Vsup do v = Q+ (0, 1)− v
Let E be the set of edges e, where e = (vi, vi+1) with vi ∈ Vinf or
vi ∈ Vsup
(b, a) = (0, 0)
forall e(ex, ey) ∈ E do3

if ex > b then (b, a) = e
end
µ = −aux + buy4

Return (a, b, µ)

Algorithm 1 computes the upper convex hull of the pointsX lying right below284

a line l between two points P and Q. rP (resp. rQ) stands for the remainder285

of point P (resp. Q) for the characteristics (aL, bL, µL). It consists of two calls286

to localCHLeftRight on lines 1 and 2. The call on line 2 corresponds to the287

computation of the hull from right to left. It returns the ordered list of vertices288

adjacent to the two edges defined in Property 2 and also remembers the closest289

point denoted by u on line 3.290

Algorithm 2 is the general algorithm to solve Problem 1, rewritten as Prob-291

lem 2. Lines 1 and 2 compute the upper hull of the points of X and the292

lower hull of the points of X respectively. The result of these calls is illus-293

trated in Figure 4(a) and (c): points vi are the one returned by the first call to294

upperConvexHullOfX on line 1, whereas the points v′i are the one returned by295

the second call on line 2, using the trick presented in the previous paragraph.296

The loop on line 3 corresponds to the application of Property 2: the edge with297

maximal x-coordinate defines the sought characteristics.The point u is the point298

closest to l below l: from Property 1 u is an upper leaning point of the DSS we299
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are looking for and µ is computed from this point on line 4300

Concerning the time complexity, algorithm localCHLeftRight(aL, bL, µL, n)301

works in O(log(n)) from [10], and is called four times. All other operations are302

done in constant time, so that the complexity of Algorithm localCHDSLSubsegment303

is O(log(n)) for a subsegment of length n.304

4. Fast walk in the Farey fan305

This section is dedicated to the presentation of another algorithm to solve306

Problem 1 using the dual space representation of the set of separating lines.307

4.1. Rewriting of the problem308

Let us consider all the possible rays R(x, y) as defined in Section 2 with309

0 < y ≤ x ≤ n. This is equivalent to considering all the linear constraints310

induced by all the pixels (x, y) such that 0 < y ≤ x ≤ n.311

Definition 3 (Farey Fan). The Farey Fan of order n, denoted by Fn is de-312

fined in the (α, β) space as the arrangement of all the rays R(x, y) such that313

0 ≤ y ≤ x ≤ n, and such that 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.314

A facet of Fn is a cell of dimension 2 of this arrangement. In the following, a315

point of Fn stands for any point v of the (α, β) space (0 ≤ α ≤ 1 and 0 ≤ β ≤ 1)316

belonging to a ray, and such that the abscissa of v is a fraction of denominator317

smaller than or equal to n.318

If P and Q are respectively the first and last point of the DSS, from the319

definition and the previous remarks, key Property 3 follows.320

Property 3 ([9]). For any n, there is a bijection between the facets of Fn321

and the DSSs of length n (composed of n + 1 pixels) such that P = (0, 0) and322

Q = (n, yq) with 0 < yq ≤ n.323

Definition 4. Let S be a DSS of length n. Facet(S) is the facet equal to P(S)324

in the Farey fan of order n.325

Moreover, from Proposition 1 a one-to-one correspondence can be defined326

between a facet and the characteristic point of the facet.327

Definition 5. Let f be a facet of the Farey fan of order n. CPoint(f) is the328

point v of f such that if v = (pq ,
r
q ), then (p, q, r) are the minimal characteristics329

of the DSS Facet−1(CPoint−1(v)).330

The Farey Fan of order 6 is depicted in Figure 5(a). The characteristic point331

of a few facets is depicted. Note that three types of facets can be identified :332

• quadrilateral facets (denoted by Q, in orange in Figure 5(a)) ;333

• upper triangular facets (denoted by T↑, in green in Figure 5(a)) ;334
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Figure 5: (a) The Farey Fan of order 6. (b) Illustration of properties 4 to 6.

• lower triangular facets (denoted by T↓, in blue in Figure 5(a)).335

Let us now go back to Problem 1. After a translation of the characteristics336

of L such that P is set to the origin (µL ← µL + aLxP − bLyP ), this problem is337

equivalent to the following one :338

Problem 3. Given a point Λ(ab ,
µ
b ), find the point v of the Farey fan of order339

n = xQ − xP such that Λ ∈ CPoint−1(v).340

In other words, the problem is to find the characteristic point of the facet of341

Fn containing Λ.342

All in all solving Problem 3 is equivalent to performing a point location in343

an arrangement of lines. However, the number of facets in the Farey fan of order344

n (which is equal to the number of DSS of length n) is in O(n3) [19, 20, 21],345

and point location algorithms in such a structure are expensive in term of both346

time and space complexity [22]. This brute force approach is then less efficient347

than classical DSS recognition algorithms [3, 4, 23, 5].348

In the following sections, we revisit the approach proposed by [9] and present349

an algorithm to solve Problem 3 in time complexity O(log n), without explicitly350

computing the Farey fan. In the next section, we recall several structural and351

arithmetical properties of the Farey fan, and derive some very useful corollaries.352

These properties are the core of the algorithm detailed in section 4.3.353

4.2. Properties of the Farey Fan354

The Farey series of order n is the set of irreducible fractions in [0, 1] of355

denominator lower than or equal to n [24]. The construction of the Farey356
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series of order n from the Farey series of order n− 1 is simply done as follows.357

Consider two consecutive fractions p
q and p′

q′ of the Farey series of order n. All358

the properties below are illustrated in Figure 5(b) in the Farey fan of order 6.359

The first four properties are from [9] and the reader is invited to consult this360

reference for the proofs, that are fairly simple.361

Property 4 ([9]). The abscissas of intersections of a ray R(x, y) of Fn with362

other rays are consecutive terms of a Farey series of order max(x, n− x).363

In Figure 5(b), the abscissas of the intersections between the ray R(2, 1),364

depicted in red, and the other rays of F6 are consecutive terms of the Farey365

series of order 4 = max(2, 6− 2).366

Property 5 ([9]). Let fi and fi+1 be two consecutive fractions of the Farey367

series of order n. In the interval fi < α < fi+1, there is no intersection of rays.368

Thus, in this interval the Farey fan is a simple ladder of rungs.369

In Figure 5(b), two ladders are depicted in blue for fi = 1
3 and fi = 2

3 .370

Property 6 ([9]). Let v(pq ,
r
q ), 0 ≤ p ≤ q ≤ n, be a point of Fn. Let R(x0, y0)371

be the ray of minimum slope passing through v. The other rays passing through372

v have a slope equal to x0 + kq with k ∈ Z and x0 + kq ≤ n.373

In Figure 5(b), three rays go through the point ( 1
2 ,

1
2 ) (in orange). The slopes374

of these rays are equal to x0 = 1, 3 and 5. From this property, we can derive375

the following corollary.376

Corollary 1. Let v(pq ,
r
q ), 0 ≤ p ≤ q ≤ n, be a point of Fn. Let R(x, y) be a377

ray passing through p. R is the ray of smallest slope passing through v if and378

only if x− q < 0. It is the ray of greatest slope passing through v if and only if379

x+ q > n.380

The following property is similar to Corollary 1 in [9], but brings in more381

information.382

Property 7. Let pq be a fraction of the Farey series of order n. The intersection383

between the line α = p
q and Fn is exactly the set of points (pq ,

r
q ) where r takes384

all the integer values between 0 and q.385

Proof. We study the intersection between R(x, y) defined by the equation386

β = −αx + y and α = p
q . We get β = −px+qy

q . For 0 ≤ y ≤ x ≤ q ≤ n, the387

quantity −px+ qy takes all the integral values in the interval [|0, q|], which ends388

the proof.389

In Figure 5(b), the intersection between α = 4
5 (depicted in green) and Fn390

is the set of points ( 4
5 ,

r
5 ) with r ∈ Z, 0 ≤ r ≤ 5. Using Properties 5 and 7, we391

can prove the following result to compute the ray of smallest slope in a given392

point.393
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Corollary 2. Let v(pq ,
r
q ), 0 ≤ p ≤ q ≤ n, be a point of Fn. Let p′

q′ be the394

fraction following p
q in the Farey series of order n. The ray of smallest slope395

passing through v is defined by the point v and the point of coordinates v′(p
′

q′ ,
r′

q′ )396

where r′ is such that r′

q′ ≤ r
q and r′+1

q′ > r
q .397

Proof. From Property 5, Fn is a ladder in the interval [pq ,
p′

q′ ], which means398

there is no intersection of rays in this interval. From Property 7, all the rays399

passing through v cut the line of equation α = p′

q′ in a point v′(p
′

q′ ,
r′

q′ ), r
′ ∈ Z,400

0 ≤ r′ ≤ q′. Among all these rays, the ray of smallest slope is the one that401

passes through the point vmax(p
′

q′ ,
rmax

q′ ) where rmax is the maximal value of r′402

such that r′

q′ ≤ r
q . It remains to prove that the two points v and vmax define a403

ray of Fn. Let x and y respectively be the slope and the intercept of the line404

defined by v and vmax. We have to prove that: i) x and y are integers, ii) x is405

lower than n. For any r′, and from a direct computation, we get x = rq′−r′q
p′q−pq′ .406

Since p
q and p′

q′ are consecutive fractions of a Farey series, we have p′q− pq′ = 1407

and x is an integer. The same relation is used to show that y is an integer, which408

proves i). Let us prove ii). From the definition of rmax we have r
q − rmax

q′ < 1
q′ ,409

which is equivalent to rq′ − rmaxq < q. Since q is lower than or equal to n, this410

ends the proof.411

Algorithmically, two solutions are possible to compute the ray of smallest412

slope through a point using Corollary 2: direct computation or dichotomy. With413

a direct computation, we get rmax = b rq′q c: rmax is the result of the integer di-414

vision. A dichotomy costs O log(q′) and is not interesting since integer numbers415

only are involved.416

4.3. Algorithm: a walk in the Farey Fan417

Following Problem 3, we look for the characteristic point of the facet con-418

taining a given point Λ(ab ,
r
b ). From Proposition 1, Section 4.1 and Property 7419

we have the following characterization of the characteristic point.420

Property 8. A point v(pvqv ,
rv
qv

) is the characteristic point of a facet if and only421

if:422

1. either v is the intersection of the two lower edges:423

(a) the ray supporting the right lower edge is the one of smallest slope in424

v;425

(b) the ray supporting the left lower edge is the one of greatest slope in v;426

2. or v is on the unique lower edge and more than one ray passes through the427

point (pvqv ,
rv+1
qv

)428

As in [9], the algorithm consists of three steps that are detailed in the fol-429

lowing sections :430
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1. Find the ladder to which Λ belongs;431

2. Locate the highest ray that lies on or below Λ: this ray supports a lower432

edge of the facet (Section 4.3.2, Algorithm 5);433

3. Walk along the ray(s) to determine the characteristic point (Section 4.3.3,434

Algorithm 6).435

4.3.1. Find the ladder436

Given a point Λ(ab ,
µ
b ), finding the ladder to which Λ belongs in Fn is equiv-437

alent to finding the two fractions with a denominator smaller than n closest to438

a
b (greater and lower). We look for two fractions f = p

q and g = p′

q′ such that439

q ≤ n, q′ ≤ n, f ≤ a
b ≤ g, and there is no fraction of denominator smaller or440

equal to n neither between f and a
b nor between a

b and g.441

The solution of this problem uses continued fractions representation of the442

number to be approximated (see [24, 25] for instance for an introduction on443

continued fractions). The solution of our problem is brought by the following444

Theorem (stated in [10, 26], with the proof in [27]).445

Theorem 1 (as stated in [26]). Suppose we are required to find the fraction,446

whose denominator does not exceed n, which most closely approximates, but is447

no greater than, the quantity a
b . If we construct a sequence of fractions contain-448

ing all the odd principal convergents of a
b with their corresponding intermediate449

convergents (if such convergents exist), then the fraction we desire is the element450

of this sequence with the largest denominator no greater than n.451

Thus the fractions we are looking for can be found by searching in the452

sequence of odd convergents for the greater one, and even convergents for the453

lower one. A nice geometrical interpretation of the continued fraction of a454

number was given by Klein in 1895, and can be found in [25] or [28]: if a455

fraction p
q is represented by the grid point (q, p), then the odd (resp. even)456

convergents of a number α are the vertices of the lower (resp. upper) convex457

hull of the grid points lying above (resp. below) the line y = αx. In particular,458

this leads to a very simple geometrical algorithm to compute the convergents459

of a rational number. This algorithm called Geometric-GCD is presented in [28]460

and has a complexity O(log(min(a, b)) for a fraction a
b .461

In order to compute the closest convergent with a bounded denominator, we462

use Geometric-GCD algorithm and simply add an upper bounding constraint463

of the form x ≤ n as in [10] to get the hybrid Algorithm 3. As in [10], the464

Intersection(P,~v, l) function computes the intersection point between the465

straight line defined by the point P and the vector ~v, and the straight line l.466

This point is of the form P + α~v, and the function Intersection returns bαc.467

Algorithm 4 implements to computation of the ladder around the fraction468

a
b in the Farey Fan of order n. If b is greater than n, then it consists in a469

simple call to the BoundedGeometricGCD algorithm. Otherwise, a direct call to470

the BoundedGeometricGCD algorithm would return the fraction a
b for both the471

lower and the upper fraction, which is not the result sought. However, as shown472

in Figure 6, since we suppose b < 2n, a simple call to BoundedGeometricGCD473

also does the trick.474
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Algorithm 3: BoundedGeometricGCD(l,n)

lright is the vertical line x = n
L = (1, 0)
U = (0, 1)
i = 0 while continue do

if i is even then
α1 = Intersection(U,L, l), α2 = Intersection(U,L, lright)
α = min(α1, α2)
U = U + αL
if (α = α2 or U is on l) then continue = false

else
α1 = Intersection(L,U, l), α2 = Intersection(L,U, lright)
α = min(α1, α2)
L = L+ αU
if (α = α2 or L is on l) then continue = false

end
return L as the lower fraction, U as the greater one.

(b, a)

2(b, a)

supL

infL

(b, a) + ((b, a)− infL)

Figure 6: Computation of the ladder when b ≤ n: the smallest fraction greater than a
b

of
denominator lower than or equal to n is given by one of the surrounded points.

4.3.2. Locate a lower edge475

At this point, we work in a ladder defined by two fractions f = p
q and476

g = p′

q′ of Fn and f < g. This step consists in localising Λ in the ladder by477

computing the highest ray under Λ in Fn. In [9], this step is performed as a478

binary search among the rays of the ladder. However, each stage of the binary479

search requires to solve a Diophantine equation with the extended Euclidean480

algorithm, reaching a total complexity of O(log2 n).481

Our algorithm, presented in Algorithm 5 and illustrated in Figure 7, also482

performs a dichotomy (line 3), but only on the rays of smallest slope passing483

through the points of abscissa p
q (in red in Figure 7). The basic operation used484

in this part is thus the computation of the position of a point Λ with respect485

to a given ray: the function PositionWrtRay(point,ray) returns on, below or486

above.487

Thanks to Property 7, the set of points of abscissa p
q can be defined as on line488

1, and the rays of smallest slope are computed in time O(1) in the ladder using489

Corollary 2 (line 2). On line 4, the ray of greatest slope is computed from the ray490
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Algorithm 4: FindLadder(ab ,n)

l : y = a
bx

if b > n then1

p
q ,

p′

q′ = BoundedGeometricGCD(l, n)

else2
p
q = a

b

(infL, supL) = BoundedGeometricGCD(l, b− 1)
supR = (b, a) + ((b, a)− infL)
if (supL closer to l than supR) or (the abscissa of supR is greater

than n) then p′

q′ ← supL else p′

q′ ← supR

return p
q and p′

q′

of smallest slope thanks to Property 6: its slope is simply equal to n− (n− x0)491

(mod q) where x0 is the slope of the ray of smallest slope. Property 6 is used in492

line 6. Two solutions are possible: (i) either a dichotomy is performed on the493

rays passing through vj+1, once again using the function PositionWrtRay, (ii)494

or a direct computation is done. In the case of (ii), let x be the slope of the495

line passing through vj+1 and Λ. Let Rj+1(xj+1, yj+1) be the ray of smallest496

slope passing through vj+1. Let [x] be the value xj+1 + kq nearest to and lower497

than x, k ∈ Z: [x] is equal to bxc + xj+1 − (bxc (mod q)) if bxc 6= xj+1, and498

equal to xj+1 otherwise. If the complexity of solution (i) is straightforwardly499

logarithmic in the number of rays, which is smaller than q, the complexity of500

solution (ii) is more complicated to evaluate since it depends on the way floor501

and modulo functions are implemented. However, we show in Section 4.4 that502

dichotomy is of help when floating-point input data is considered.503

In Figure 7, on the left, the point Λ is located under the ray of greatest slope504

passing through vj+1 (in green, line 5 in Algorithm 5), Rj is returned. On the505

right, the point Λ is in between the rays passing through vj+1.506

4.3.3. Find the characteristic point507

Let us denote by M and N the two points defined as the intersection between508

the ray R(x, y) returned by Algorithm 5 and the vertical lines defining the509

ladder, i.e. α = p
q and α = p′

q′ as defined in Section 4.3.1. The segment [MN ] is510

part of a lower edge of the facet of Fn containing Λ in Fn.511

The first step of the algorithm detailed in Algorithm 6 is to compute the512

extremities of the lower edge containing [MN ]. To do so, the key point is to use513

Property 4 to characterize the points of intersection between a ray and other514

rays. Given a ray R(x, y) of the Farey Fan Fn and a point v(pq ,
r
q ) on this ray,515

v is the crossing point of several rays if and only if q ≤ max(x, n − x). Thus,516

the abscissa of the left (resp. right) extremity of the lower edge is given by the517

term of the Farey series of order max(x, n − x) preceding (resp. following p
q518

(resp. p′

q′ ) (line 1 of Algorithm 6). This step is simply completed with a call to519
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Algorithm 5: localizeLowerEdge(pq ,
p′

q′ ,Λ)

Let vi = (pq ,
i
q ), i ∈ Z, 0 ≤ i ≤ q1

Let Ri(xi, yi) be the ray of smallest slope passing through vi2

Perform a dichotomy on the Ri to compute j ∈ [|0, q − 1|] such that Λ is3

above Rj and below Rj+1

Let R′j+1 be the ray of greatest slope passing through vj+14

if PositionWrtRay(Λ,R′j+1) = on then
return R′j+1

else
if PositionWrtRay(Λ,R′j+1) = below then5

return Rj
else

Among all the rays passing through vj+1, find the ray R which is6

right under Λ and return R

the function BoundedGeometricGCD for the line of slope p
q and with an upper520

bounding constraint set to max(x, n − x) (Algorithm 6, line 1). We get the521

two fractions
p

q and p
q preceding and following p

q in the Farey series of order522

max(x, n− x). Note that since p
q and p′

q′ are consecutive fractions of the Farey523

series of order n, the fraction p
q is also greater than p′

q′ . From these two fractions524

we compute the two points O of R with abscissa equal to
p

q and O of R with525

abscissa equal to p
q (line 2).526

At this point, [OO] is a lower edge of the facet containing Λ. Then, the527

three cases illustrated in Figure 8 can occur: either O or O is the characteristic528

point (case (a) and (b)), or not (case (c)). We use Property 8 to distinguish529

between these cases:530

• if R is the ray of smallest slope in O, then O is the characteristic point:531

the condition line 3 refers to Corollary 1;532

• if R is the ray of greatest slope in O, then O is the characteristic point:533

the condition line 4 refers to Corollary 1;534

• otherwise, the facet is lower triangular, and the abscissa of the charac-535

teristic point is given by the mediant of the abscissas of the lower edge536

extremities, i.e. O and O (direct consequence of Property 4): on line 5,537

the mediant is computed, and the point of R with this abscissa is the538

characteristic point.539

4.3.4. General algorithm and Complexity540

The general algorithm FareyFanDSLSubsegment gathering all the functions541

presented before is summed up in Algorithm 7. It solves Problem 3, equivalent542
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Figure 7: Illustration of Algorithm 5: the dichotomy is performed on the red rays only.

to Problem 1 returning the point of the Farey Fan which is the characteristic543

point of the DSL subsegment preimage.544

Lemma 1. The complexity of Algorithm 7 is in O(log(n)).545

Proof. We assume a computing model where standard arithmetic operations546

are done in constant time. Finding the ladder is done using Algorithm 4 that547

has a complexity of O(log(n)).548

The localization of a lower edge is done with Algorithm 5: the computation549

of the Ri (line 2) does not have to be done as a precomputation since the550

dichotomy (line 3) can be performed on the indices i. Thus they are computed551

on the fly and only when necessary, and the complexity of these two lines is in552

O(log(q)) with q ≤ n. The operations done in lines 4 to 5 are done in constant553

time. The complexity of line 6 was discussed in Section 4.3.2 and is O(log(q))554

in the worst case. All in all, the complexity of Algorithm 5 is in O(log(q)).555

Algorithm 6 performs the last step of the algorithm. On line 1, computing556

the points O and O costs O(log q) with q ≤ n (see Section 4.3.3). The com-557

putation of the mediant fraction on line 5 also has a logarithmic worst time558

complexity if the fraction is not irreducible. However, we can show that p + p559

and q + q are relatively prime: since
p

q and p
q are succcessive terms of a Farey560

series, the denominator of the mediant must be strictly greater than max(q, q) ;561

if
p+p

q+q was reducible, there would exist an integer k ≥ 2 such that
p+p

q+q = kp′′

kq′′ ,562

which contradictorily implies q′′ ≤ max(q, q). Thus, the mediant computation563

is done in constant time.564

All the other operations of this algorithm take O(1), which ends the proof.565
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Figure 8: Three cases for the lower edge [OO]: (a) all the rays passing through O (in blue)
have a slope greater than x and O is the characteristic point; (b) all the rays passing through
O (in blue) have a slope smaller than x and O is the characteristic point; (c) neither O nor O
is the solution, and the characteristic point is found with a mediant computation.

Algorithm 6: findCPoint(pq ,
p′

q′ , R)

Let R(x, y) be the ray output by Algorithm 5
(
p

q ,
p
q ) = BoundedGeometricGCD(y = p

qx, max(x, n− x))1

Let O (resp. O) be the intersection point between α =
p

q (resp. p
q ) and R2

if x− q < 0 then3

return O else
if x+ q > n then4

return O
else

Let p̃
q̃ =

p+p

q+q5

return the intersection point between α = p̃
q̃ and R

This algorithm solves Problem 3 in O(log(n)) where n is the order of the566

Farey fan. From the equivalence of Problems 1 and 3, this algorithm also solves567

Problem 1 in logarithmic time where n is the length of the DSS.568

4.4. Extensions569

4.4.1. 4-connected DSL subsegment570

In the framework presented above, the DSL and DSS considered are 8-571

connected sets of pixels. In [8, 1] the authors consider the same problem but572

with 4-connected digital straight lines and segments. Their definition is similar573

to the 8-connected lines: a 4-connected DSL of integer characteristics (a, b, µ)574

is the infinite set of digital points (x, y) ∈ Z2 such that 0 ≤ ax− by+ µ < a+ b575

assuming that, as before, 0 ≤ a ≤ b.576

Adapting the algorithm FareyFanDSLSubsegment for the computation of the577

minimal characteristics of 4-connected DSL subsegments is actually very easy578

using the following property.579
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Algorithm 7: FareyFanDSLSubsegment(aL, bL, µL, P,Q)

Let Λ = (aLbL ,
µL

bL
)

Let n = xQ − xP
(pq ,

p′

q′ ) = FindLadder(aLbL ,n)

R = localizeLowerEdge(pq ,
p′

q′ ,Λ)

CPoint = findCPoint (pq ,
p′

q′ , R)
return CPoint

Property 9. The grid point (x + y, y) belongs to the 8-connected DSL (a, b +580

a, µ) if and only if the grid point (x, y) belongs to the 4-connected DSL (a, b, µ).581

582

Proof. (x + y, y) belongs to the 8-connected DSL D(a, b + a, µ) is equivalent583

to 0 ≤ a(x + y) − (b + a)y + µ < b + a. Rewriting this equation we get 0 ≤584

ax − by + µ < b + a, which is equivalent to say that (x, y) belongs to the585

4-connected DSL (a, b, µ).586

Thus, a simple shear transform of matrix M = ( 1 1
0 1 ) transforms the points587

of a 4-connected DSL into a 8-connected DSL as illustrated in Figure 9.588

(a) (b)

Figure 9: The 4-connected DSL (3, 7, 0) in (a) is transformed into the 8-connected DSL
(3, 10, 0)

Consider now Problem 4 which is the same as Problem 1 for 4-connected589

DSL.590

Problem 4. Given a 4-connected DSL L of characteristics (aL, bL, µL) and two591

points P (xP , yP ) and Q(xQ, yQ) of this DSL, compute the minimal character-592

istics (a, b, µ) of the DSS S = {(x, y) ∈ L | xP ≤ x ≤ xQ}.593

Thanks to Property 9, solving Problem 4 is equivalent to solving Problem594

1 for a 8-connected DSL of characteristics (aL, bL + aL, µL) and the two points595

Pt(xP + yP , yP ) and Qt(xQ + yQ, yQ). If (a, b, µ) is the solution for Problem 1596

on this data, then (a, b− a, µ) is the solution of Problem 4.597

4.4.2. When the DSL characteristics are floating-point numbers598

Let us now consider the case when the characteristics of the DSL given as599

input data are not rational numbers anymore, but real numbers. We now have600

Λ(αL, βL) with αL and βL in R.601
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From a theoretical point of view, the algorithm FareyFanDSLSubsegment602

proposed in Section 4 works the same. However, as often for geometrical al-603

gorithms, things get more complicated when the implementation in concerned.604

Working on this issue is a research domain by itself, and a huge literature can605

be found about robustness in geometrical problems. See for instance [29, 30].606

Without going to deep in these considerations, we propose a solution to get607

a robust algorithm for floating-point input data. The robustness is evaluated in608

Section 5.2.609

The only functions that may cause some problems are the ones involving610

directly the point Λ(αL, βL). A careful analysis of the algorithm shows that611

this concerns only two particular functions: the function Intersection(P,~v, l)612

called in Algorithm 4.3.1 and the function PositionWrtRay(point,ray) called613

on lines 4 and 5 of Algorithm 5. In the first case, the computation of the position614

of an integer point with respect to a line with floating-point characteristics in615

involved, while in the second case, the computation of the position of a point616

with floating-point coordinates with respect to a line with integer characteristics617

is done. Let us also come back to the line 6 of Algorithm 5. We saw in Section618

4.3.2 that two algorithmic choices are possible: either (i) a dichotomy using the619

function PositionWrtRay or (ii) a direct computation involving the computation620

of the slope of a line going through Λ. As we see in the few next lines, it is621

possible to make the function PositionWrtRay robust, while the computation622

of a slope involving floating-point coordinates plus its rounding seems more623

difficult to control, on an uncertainty point of view. Thus choice (i) seems to624

be the better one for floating-point input data.625

The uncertainty over the floating-point data is handled in a very classical626

way using an ε parameter. The way this parameter is used is illustrated in627

Figure 10. In (a), a centered band of height ε is defined around the line l of628

the Intersection(P,~v, l) algorithm. If P + α~v lies in the gray area, the point629

is said to be on the line. If it is above the gray area, the point lies above l,630

and below otherwise. Similarly, in (b) a vertical interval of height ε is defined631

around Λ in the function PositionWrtRay: if the ray R crosses the interval, the632

point is said to be on the ray, if R is below the interval, R is below l, and above633

otherwise. We could equivalently have represented the uncertainty around the634

ray R in (b) as we do in (a), but since the uncertainty is carried by the point Λ635

we find this representation more accurate.636

P ~v

l

ε

(a)

R(x, y)

Λε

(b)

Figure 10: Use of the ε parameter for the Intersection (a) and the PositionWrtRay (b)
functions.
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The value of the parameter ε depends on the precision of the input data. If637

the coordinates of Λ are known with a precision of 10−r, then one can ex-638

pect that the result of the algorithm on the floating-point point Λ(αL, βL)639

is the same as the result obtained for the integer characteristics (a, b, µ) =640

(αL.10r, 10r, βL.10r). This suggests that a good value for ε could be 10−r. In-641

deed, consider a line of equation l : ax − 10ry + µ = 0, where a and 10r are642

relatively prime. Then there is no integer point in the centered band of vertical643

height 2∗10r. Thus, for instance in the case of the Intersection function, any644

integer point that is in the band of vertical height 10r is closer from l than from645

any other line with the same slope and integer characteristics. A similar reason-646

ing can be done for the function PositionWrtRay. An experimental validation647

is conducted in Section 5.2.648

Last, we would like to address rapidly the consequences in the case of failures.649

Concerning the function PositionWrtRay, an erroneous answer leads to a bad650

localization of the lower edge: the result is either the edge below or the edge651

above the ground truth edge. This means that the final answer will be the652

characteristic point of the cell just below or just above the ground truth cell.653

Nevertheless, from the definition of the preimage of a DSS, it is easy to see654

that the difference between two DSSs the preimage of which share an edge is of655

exactly one pixel. The abscissa of this pixel is given by the slope of the common656

edge. This means that an erroneous answer of the function PositionWrtRay657

leads to a difference of at most one pixel between the DSS computed and the658

ground-truth DSS.659

Concerning the function Intersection, the analysis is more complicated.660

Indeed, if the two fractions returned by the function are not consecutive fractions661

in a Farey series, the algorithm fails to find a solution. If the two fractions are662

not the correct ones, but are consecutive terms of a Farey series the algorithm663

will output a result, but the error committed is difficult to estimate. A deeper664

study could be done if need be.665

5. Experimentation666

5.1. Implementation and settings667

The two algorithms presented in this paper are implemented and available668

in the generic C++ open-source library DGtal [31]. The DGtal library includes669

several Digital Straight Segment recognition algorithms. Moreover, the authors670

of [7, 8, 1] made there algorithms available in this library. Comparing our671

respective results was then an easy and robust task.672

To conduct the experiments detailed below, we also reuse the protocol de-673

scribed in [1] and available as a test file in DGtal. The overall protocol is674

governed by two parameters : N governs the value of b while n is the length of675

the subsegment. We recall here this protocol that includes a few minor changes.676

1. Input characteristics (a, b, µ) are randomly chosen as follows:677

• b is randomly chosen in the interval [N − N
2 , N + N

2 ];678
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• a is randomly chosen in the interval [0, b] - we also ensure that679

gcd(a, b) = 1;680

• µ is randomly chosen in the interval [0, 2N ];681

2. Points P and Q defining the subsegment are chosen as follows:682

• xP is randomly chosen in the interval [0, n];683

• xQ is equal to xP + n where n is the length of the subsegment;684

Concerning the number of draws, we randomly draw 4000 couple of values685

for b and a, for which 5 values of µ are chosen. For each of the 20000 triplets686

(a, b, µ), we draw 10 random values for xP and xQ.687

We repeat this process for values of N equal to 10k with k ∈ [1, 9]. For each688

N , the values of n are in the interval [10, 2N ] with an increment n← 4
3n. Thus,689

for each couple of values (N,n) we proceed to 4000 ∗ 5 ∗ 10 = 200000 draws.690

The mean computation time of these draws for each couple (N,n) is reported.691

As stated in Section 2.3, easy cases are withdrawn: when n gets bigger and692

close to N , the number of easy cases increases and the mean time would decrease693

if they were kept, bringing no useful information on the efficiency of the core of694

the algorithms.695

5.2. Experimental correctness696

The first experiment is to validate the correctness of the implementation697

of our two algorithms. To do so, many tests have been conducted. First, the698

results of the algorithms FareyFanDSLSubsegment and localCHDSLSubsegment699

have been directly compared to the results given by the linear-in-time algorithm700

ArithmeticalDSS, as implemented in the DGtal library.701

Next, the results of the algorithm FareyFanDSLSubsegment in the case of702

4-connected DSLs (see Section 4.4) have been compared to the results returned703

by the algorithm ReversedSmartDSS.704

Finally, the correctness of the floating-point implementation of the algorithm705

FareyFanDSLSubsegment was also evaluated. To do so, we reused the protocol706

defined in the previous section, but the possible values of b were powers of 10.707

For each b = 10k, random integer values of a and µ were chosen. Then the708

results of the algorithm on the integer data (a, b, µ) and on the floating-point709

(decimal) data (ab ,
µ
b ) were compared. In the experiments, the ε parameter was710

set to 10k as explained in Section 4.4, and no errors were reported for the several711

millions of tests carried out.712

5.3. General speed contest713

The three algorithms ReversedSmartDSS, localCHDSlSubsegment and FareyFanDSLSubsegment714

all have a theoretical logarithmic time complexity, the logarithm being applied715

to different values (length of the segment, or difference of depth of the input and716

output continued fractions). Algorithm SmartDSS has a time complexity which717

depends on the sum of the quotients of the continued fraction of the output slope718

and on the number of pattern repetitions. In [1], the authors showed that the719
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algorithm SmartDSS was always slower than ReversedSmartDSS. Consequently,720

for the sake of clarity, we compare our algorithms with ReversedSmartDSS only721

and try to exhibit in which cases one algorithm may be faster than the others.722
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Figure 11: Runtime comparison of our algorithms and one algorithm of [7, 8, 1]

Figure 11 presents the results obtained for three values of N for the three723

algorithms, for n varying as defined in the previous section. Each value of N724

is represented by a color (red for 103, green for 106 and blue for 109) and each725

algorithm is identified by a point type (square for FareyFanDSLSubsegment,726

disk for ReversedSmartDSS and triangle for localCHDSlSubsegment).727

First if we have a look at a particular value of N (one color), we note that728

FareyFanDSLSubsegment is faster than the other two for small values of n: when729

n becomes bigger ReversedSmartDSS gets better. For very big values of N and730

very small n, localCHDSlSubsegment is faster than ReversedSmartDSS but still731

slower than FareyFanDSLSubsegment.732

Next, this graph also brings information about the behaviour of each al-733

gorithm for increasing values of N . Algorithms FareyFanDSLSubsegment and734

localCHDSlSubsegment seem to be insensitive to the value of N for small values735

of n: for a given n, the computation time is similar for all N . However, in both736

cases, a slight decrease of the mean computation time occurs when n gets bigger737

than N .738

Concerning the algorithm ReversedSmartDSS, the graph reflects the fact739

that the complexity depends on both the value of N and the value of n: for a740

given n, the lower the N , the faster the computation.741

To conclude on this experimental study, let us replace this work in the con-742

text of image analysis, where the DSS length is bounded by the image size.743
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Considering that best compact consumer cameras provide 10 megapixels im-744

ages, the maximal length of DSSs in such images is bounded by a few thousands745

of pixels. If gigapixel images are considered, the length of the DSSs can reach746

values of several tens of thousands of pixels, not more for now. In both cases,747

our algorithm FareyFanDSLSubsegment is very competitive for any value of N .748

6. Conclusion749

We have proposed two algorithms to compute the characteristics of a DSS750

which is a subsegment of a DSL of known characteristics. These algorithms751

use two dual representations of the set of separating lines for a given set of752

grid points. localCHDSLSubsegment uses local computation of upper and lower753

convex hull to find the separating line of minimal characteristics. We provide754

the theoretical proof that only a few edges of the hulls are necessary to find755

the result. FareyFanDSLSubsegment uses the Farey fan and its numerous arith-756

metical properties. With this algorithm, the structure of the set of separating757

lines does not need to be computed since it is known through the Farey Fan,758

and the problem comes down to a point localization in an arrangement. We759

also showed that it could be extended to floating-point input data.760

Both algorithms have a logarithmic time complexity. Moreover, they are761

efficient in practice, and easy to implement. The results have been thoroughly762

compared to existing algorithms, both in terms of correctness of the result (to763

validate the implementation) and in terms of computation time.764

There now exists four algorithms of logarithmic time complexity to solve765

the DSL subsegment problem. However, no lower bound on the complexity has766

been proven so far. Is is possible to compute the DSL subsegment minimal767

characteristics in sub-logarithmic time ? Is it possible in constant time ? This768

is still an open question.769

Another perspective is to use this algorithm in fast digitization algorithms.770

Suppose we want to digitize a straight segment given by its two floating-point771

endpoints on a grid of size n. A fast solution could be to compute the min-772

imal characteristics of the DSS before drawing it using the arithmetical DSS773

definition.774
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