# A note on the computation of the fraction of smallest denominator in between two irreducible fractions 

Isabelle Sivignon<br>Univ. Grenoble Alpes, GIPSA-Lab, F-38000 Grenoble, France CNRS, GIPSA-Lab, F-38000 Grenoble, France


#### Abstract

Given two irreducible fractions $f$ and $g$, with $f<g$, we characterize the fraction $h$ such that $f<h<g$ and the denominator of $h$ is as small as possible. An output-sensitive algorithm of time complexity $\mathcal{O}(d)$, where $d$ is the depth of $h$ is derived from this characterization.


Keywords: simplest fraction, continued fractions, algorithm

## 1. Introduction

Given two irreducible fractions defining an interval, we investigate the problem of finding the fraction of smallest denominator in this interval. Keeping integers as small as possible can be crucial for exact arithmetic computations. Indeed, even if exact arithmetic libraries [1] provide efficient tools to handle exact computations on arbitrarily large integers, dealing with big integers remains computationally expensive. Thus, when a parameter value has to be chosen in a given interval, it may be interesting to choose the value involving integers as small as possible to enable fast computations. This problem also has a nice geometric interpretation and arises for instance in the computation of the integer hull of a polygon [2].

In this note, we consider two irreducible proper fractions $f$ and $g$ such that $0 \leq f<g \leq 1$. We give a characterization of the irreducible proper fraction $h$ such that $f<h<g$ and the denominator of $h$ is as small as possible. Finally, we provide an output-sensitive algorithm to compute $h$ from the continued fraction decompositions of $f$ and $g$.

## 2. Problem statement and theorem

A simple continued fraction is an expression of the form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}}
$$

The numbers $a_{i}$ are called partial quotients. In the following, we restrict ourselves to the case where all $a_{i}$ are positive integers. Any rational number $f$ can be expressed as a simple continued fraction with a finite number of partial quotients. We denote $f=\frac{p}{q}=\left[a_{0} ; a_{1}, a_{2} \ldots a_{n}\right], p, q \in \mathbb{N}$. The $m$-th principal convergent of $f$ is equal to $f_{m}=\frac{p_{m}}{q_{m}}=\left[a_{0} ; a_{1}, a_{2} \ldots a_{m}\right]$. The sequence of fractions $f_{2 m}, m \in 0 \ldots\left\lfloor\frac{n}{2}\right\rfloor$, is increasing while the sequence of fractions $f_{2 m+1}, m \in 0 \ldots\left\lfloor\frac{n}{2}\right\rfloor$ is decreasing. Moreover, for any $a_{i}>1$, the intermediate

[^0]convergents are defined as $f_{i, k}=\frac{p_{i k}}{q_{i k}}=\left[a_{0} ; a_{1} \ldots a_{i-1}, k\right]$ with $1 \leq k<a_{i}$. When $k=a_{i}$, we have $f_{i, a_{i}}=f_{i}$. In the following, convergent stands for either a principal or an intermediate convergent.

For a given fraction $f$, we define two ordered sets of convergents as follows (see also [3, Chap. 32, Parag. 15]): $\Gamma_{\text {even }}(f)=\left\{f_{2 m, k}, k \in 1 \ldots a_{2 m}, m \in 0 \ldots\left\lfloor\frac{n}{2}\right\rfloor\right\}, \Gamma_{\text {odd }}(f)=\left\{f_{2 m+1, k}, k \in 1 \ldots a_{2 m+1}, m \in\right.$ $\left.0 \ldots\left\lfloor\frac{n-1}{2}\right\rfloor\right\}$. If $a_{2 m}>1$, we have $f_{2 m, k-1}<f_{2 m, k}$ for any $m \in 0 \ldots\left\lfloor\frac{n}{2}\right\rfloor$ and any $k \in 2 \ldots a_{2 m}$, and if $n \geq 2$, $f_{2 m, a_{2 m}}<f_{2 m+2,1}$ for any $m \in 0 \ldots\left\lfloor\frac{n}{2}\right\rfloor-1$. Similarly, if $a_{2 m+1}>1$ we have $f_{2 m+1, k-1}>f_{2 m+1, k}$ for any $m \in 0 \ldots\left\lfloor\frac{n-1}{2}\right\rfloor$ and any $k \in 2 \ldots a_{2 m}$, and if $n \geq 3, f_{2 m+1, a_{2 m}}>f_{2 m+3,1}$ for any $m \in 0 \ldots\left\lfloor\frac{n-1}{2}\right\rfloor-1$.

For the sake of clarity, we rename the elements of $\Gamma_{\text {even }}(f)$ and $\Gamma_{\text {odd }}(f)$ as follows: $\Gamma_{\text {even }}(f)=\left\{\gamma_{0}=\right.$ $\left.\left[a_{0}\right], \gamma_{2} \ldots \gamma_{2 i} \ldots\right\}$ and $\Gamma_{o d d}(f)=\left\{\ldots \gamma_{2 i+1} \ldots \gamma_{3}, \gamma_{1}=\left[a_{0} ; a_{1}\right]\right\}$.
Definition 1. A fraction $f$ is said to be less complex (resp. more complex) than a fraction $g$ if and only if the denominator of $f$ is strictly lower (resp. strictly greater) than the denominator of $g$.

Before stating our main theorem, let us recall some classical definitions. The Farey sequence of order $n$ is the ascending sequence of irreducible fractions between 0 and 1 whose denominator do not exceed $n$ [4]. The mediant fraction of two given fractions $\frac{p}{q}$ and $\frac{p^{\prime}}{q^{\prime}}$ is defined as $\frac{p+p^{\prime}}{q+q^{\prime}}$. Given three successive terms $\frac{p}{q}, \frac{p^{\prime}}{q^{\prime}}$ and $\frac{p^{\prime \prime}}{q^{\prime \prime}}$ of a Farey sequence, $\frac{p^{\prime}}{q^{\prime}}$ is the mediant of $\frac{p}{q}$ and $\frac{p^{\prime \prime}}{q^{\prime \prime}}$ and we have $p^{\prime} q-p q^{\prime}=1\left(\right.$ similarly, $\left.p^{\prime \prime} q^{\prime}-p^{\prime} q^{\prime \prime}=1\right)$.

Theorem 1. Let $f$ and $g$ be two irreducible fractions such that $0 \leq f<g \leq 1$. Let $\mathcal{H}=\left\{\frac{p}{q} \left\lvert\, f<\frac{p}{q}<g\right.\right\}$, and $h_{\text {min }}=\underset{\frac{p}{q} \in \mathcal{H}}{\arg \min }\{q\}$. Then,
(i) the fraction $h_{\min }$ is well (uniquely) defined;
(ii) if $f$ and $g$ are successive terms of a Farey sequence, $h_{\min }$ is equal to the mediant of $f$ and $g$;
(iii) otherwise, if $g$ is a convergent of $f, g=\gamma_{i} \in \Gamma_{o d d}(f)$, then $h_{\min }=\gamma_{i+2}$;
(iv) otherwise, if $f$ is a convergent of $g, f=\gamma_{i} \in \Gamma_{\text {even }}(g)$, then $h_{\min }=\gamma_{i+2}$;
$(v)$ otherwise, $h_{\min }$ is equal to the unique fraction in $\mathcal{H}$ that is a convergent of both $f$ and $g$.
The proof uses the following lemmas.
Lemma 1. ([3, Chap. 32, Parag. 15]) For any fraction f, "it is impossible between any consecutive pair of either" $\Gamma_{\text {even }}(f)$ or $\Gamma_{\text {odd }}(f)$ "to insert a fraction which shall be less complex than the more complex of the two".
Lemma 2. Let $\frac{p}{q}$ and $\frac{p^{\prime}}{q}$ be two irreducible fractions with $0<\frac{p}{q}<\frac{p^{\prime}}{q}<1, q \neq 1$. There exists a fraction $\frac{a}{b}$ such that $b<q$ and $\frac{p}{q}<\frac{a}{b}<\frac{p^{\prime}}{q}$.

Proof. Suppose that there is no fraction of denominator strictly lower than $q$ between $\frac{p}{q}$ and $\frac{p^{\prime}}{q}$. Then $\frac{p}{q}$ and $\frac{p^{\prime}}{q}$ are two successive terms of the Farey sequence of order $q$. Therefore, $p^{\prime} q-q p=1$, and rewriting $p^{\prime}$ as $p+k$ with $k \in \mathbb{N}, k \geq 1$, we get $q k=1$, which leads to a contradiction.

Lemma 3. For any fraction $f$, and for all $i, j \in \mathbb{N}$, if $\gamma_{i}$ and $\gamma_{j}$ are two elements of $\Gamma_{\text {even }}(f)$ or $\Gamma_{\text {odd }}(f)$, then $\gamma_{i}$ is more complex than $\gamma_{j}$ if and only if $i>j$.

Proof. The proof is straightforward from the definition of principal and intermediate convergents.
Proof. (of Theorem 1)
(i) Suppose that there exist two fractions $h=\frac{a}{b}$ and $h^{\prime}=\frac{a^{\prime}}{b}$ such that $b=\min _{\frac{p}{q} \in \mathcal{H}}\{q\}$ and $h, h^{\prime} \in \mathcal{H}$. From the Theorem hypothesis, $0<h<1$, and thus $b>1$. Then Lemma 2 directly leads to a contradiction. Moreover, a similar argument shows that the denominator of $h_{\text {min }}$ is different from both the denominators of $f$ and $g$.
(ii) In this case, as stated in [3, Chap. 32, Parag. 12] for instance, any fraction lying between $f$ and $g$ is more complex than $f$ and $g$. Consequently, $h$ is the fraction such that $f, h$ and $g$ are successive terms of a Farey sequence of order strictly greater than $\max \left\{f_{q}, g_{q}\right\}$, and by definition, $h$ is the mediant of $f$ and $g$.
(iii) Let $h \in \mathcal{H}, h \neq \gamma_{i+2}$. We show that $h$ is more complex than $\gamma_{i+2}$. First, if $\gamma_{i+2}<h<g$, then Lemma 1 enables to conclude. If there exists $j$ such that $h=\gamma_{j}$, then $j>i+2$ since $h \in \mathcal{H}$, and we conclude using Lemma 3. Finally, if there exists $j$ such that $\gamma_{j+2}<h<\gamma_{j}, j>i+2$ then from Lemma $3, \gamma_{j}$ is more complex than $\gamma_{i+2}$ and from Lemma $1, h$ is more complex than $\gamma_{j}$. So any fraction of $\mathcal{H}$ is more complex than $\gamma_{i+2}$. Moreover, since $f$ and $g$ are not successive terms of a Farey sequence, $\gamma_{i+2} \neq f$, which proves that $h_{\text {min }}=\gamma_{i+2}$.
(iv) The proof is similar to item (iii).
(v) Since $f$ and $g$ are not convergents of one another and not successive terms of a Farey sequence, let $\gamma_{i}$ and $\gamma_{i+2}$ be the two convergents of $f$ such that $\gamma_{i+2}<g<\gamma_{i}$. Similarly, let $\gamma_{j}^{\prime}$ and $\gamma_{j+2}^{\prime}$ be the two convergents of $g$ such that $\gamma_{j}^{\prime}<f<\gamma_{j+2}^{\prime}$. Then, $h_{\min }$ is equal to $\gamma_{i+2}$ or $\gamma_{j+2}^{\prime}$. Indeed, there is no fraction less complex than $\gamma_{i+2}$ between $f$ and $\gamma_{i+2}$ (by definition and Lemma 1 ), and if there was such a fraction between $\gamma_{i+2}$ and $g$, then there would be a fraction less complex than $\gamma_{i+2}$ between $\gamma_{i+2}$ and $\gamma_{i}$, which is not possible from Lemma 1. A similar reasoning can be done with $\gamma_{j+2}^{\prime}$. All in all, this implies that either $\gamma_{i+2}=\gamma_{j+2}^{\prime}$ or $\gamma_{i+2} \neq \gamma_{j+2}^{\prime}$ and they have the same denominator. Since this latter case is not possible (see (i)), $h_{\text {min }}=\gamma_{i+2}=\gamma_{j+2}^{\prime}$ which is the unique fraction in $\mathcal{H}$ that is a convergent for both $f$ anf $g$.

The different cases of Theorem 1 have a nice interpretation using the Stern-Brocot tree [5, 6]. Cases (iii) and (iv) correspond to the case where $f$ is an ancestor of $g$ (or conversely) when $f$ and $g$ are not successive terms of a Farey sequence. Case (v) is the case where $f$ and $g$ have a unique common ancestor in the tree, which is the fraction of smallest denominator between them.

## 3. Algorithm and complexity

Algorithm 1 is an efficient algorithmic translation of Theorem $1^{1}$. It is based on the representation of $f$, $g$ and $h_{\text {min }}$ as continued fractions.

Let $f=\left[a_{0} ; a_{1}, a_{2} \ldots a_{n}\right]$ and $g=\left[b_{0} ; b_{1}, b_{2} \ldots b_{m}\right]$, with $a_{n}>1$ and $b_{m}>1$. We note that, when $f$ and $g$ are not successive terms of a Farey sequence, $h_{\text {min }}$ is a convergent of $f, g$ or both. In any case, this convergent can be defined by the knowledge of the common partial quotients of $f$ and $g$.

In the algorithm, the partial quotients of $f$ and $g$ are computed on the fly using the Euclidean algorithm. We denote by $r_{i}(f)$ the difference between $f$ and its $i$-th principal convergent: $r_{i}(f)=f-f_{i}$.

Theorem 2. Given two proper irreducible fractions $f$ and $g$ such that $0 \leq f<g \leq 1$, Algorithm 1 computes the fraction $h$ of smallest denominator such that $f<h<g$.

Proof. On line 1, the algorithm tests whether $f$ and $g$ are successive terms of a Farey sequence. If so, and following Theorem 1, $h$ is set to the mediant of $f$ and $g$.

Otherwise, the partial quotients of $f$ and $g$ are pairwise compared in the while loop of lines $7-9$. The algorithm exits the loop when either the $i$-th partial quotients of $f$ and $g$ differ or the $i$-th partial quotient is the last one for $f$ or $g$. Indeed, the partial quotient $a_{i}$ (resp. $b_{i}$ ) is the last partial quotient of $f$ (resp. $g$ ) if and only if $r_{i}(f)=0$ (resp. $r_{i}(g)=0$ ). The tests between line 10 and line 33 cover all the possible exit cases. We review these cases here and prove case by case that the fraction $h$ returned is the correct one.

[^1]- The cases where $a_{i}=b_{i}$ and $r_{i}(f)$ or $r_{i}(g)$ is equal to zero are covered by lines $10-14$. Note that we cannot have $r_{i}(f)=r_{i}(g)=0$ otherwise $f$ would be equal to $g$. If $r_{i}(f)=0$, then we have $f=\left[a_{0} ; a_{1} \ldots a_{i}\right]$ and $g=\left[a_{0} ; a_{1} \ldots a_{i}, b_{i+1}, \ldots b_{m}\right]$ with $m>i+1$ since $f$ and $g$ are not consecutive terms of a Farey sequence. Thus, by definition $f$ is a principal convergent of $g$, and since $f<g$ by hypothesis, $f$ is an even convergent of $g$. From Theorem $1(i v), h$ is the next even convergent of $g$. We have $h=\left[a_{0} ; a_{1} \ldots a_{i}, b_{i+1}, 1\right]=\left[a_{0} ; a_{1} \ldots a_{i}, b_{i+1}+1\right]$. The case where $r_{i}(g)=0$ is symmetrical and the proof is similar.
- If $a_{i} \neq b_{i}$ and neither $r_{i}(f)$ nor $r_{i}(g)$ are equal to zero (lines $16-17$ ), then we have $f=\left[a_{0} ; a_{1} \ldots a_{i-1}\right.$, $\left.a_{i} \ldots a_{n}\right]$ with $n>i, a_{n}>1$, and $g=\left[a_{0} ; a_{1} \ldots a_{i-1}, b_{i} \ldots b_{m}\right]$ with $b_{i} \neq a_{i}, m>i$ and $b_{m}>1 . f$ is not a convergent of $g$, nor conversely, and this case corresponds to case $(v)$ of Theorem 1. The fraction $h=\left[a_{0} ; a_{1} \ldots a_{i-1}, \min \left(a_{i}, b_{i}\right)+1\right]$ is a convergent of both $f$ and $g$ since $n, m>i$.
- If $a_{i} \neq b_{i}$ and $r_{i}(f)=r_{i}(g)=0$ (lines $19-20$ ), then we have $f=\left[a_{0} ; a_{1}, \ldots a_{i-1}, a_{i}\right]$ and $g=$ $\left[a_{0} ; a_{1}, \ldots a_{i-1}, b_{i}\right]$ with $b_{i} \neq a_{i}$. If $b_{i}<a_{i}, g$ is an odd convergent of $f$, and $f$ is an even convergent of $g$ otherwise. In the first case, following Theorem 1 (iii), $h$ is the next odd convergent of $f$, and $h=\left[a_{0} ; a_{1}, \ldots a_{i-1}, b_{i}+1\right]$. We have $h \neq f$ (i.e. $\left.b_{i}+1 \neq a_{i}\right)$ since otherwise $f$ and $g$ would be successive convergents of $f$, and this case has been excluded by the test on line 1 . The case $a_{i}<b_{i}$ is similar and proved using Theorem $1(i v)$, leading to $h=\left[a_{0} ; a_{1}, \ldots a_{i-1}, \min \left(a_{i}, b_{i}\right)+1\right]$.
- If $a_{i} \neq b_{i}$ and $r_{i}(f)=0$ and $r_{i}(g) \neq 0$ (lines $22-27$ ), then $f=\left[a_{0} ; a_{1}, \ldots a_{i-1}, a_{i}\right]$ and $g=$ $\left[a_{0} ; a_{1}, \ldots a_{i-1}, b_{i}, \ldots b_{m}\right]$, with $m>i$ and $b_{m}>1$. Three subcases arise, according to the respective values of $a_{i}$ and $b_{i}$ (keeping in mind that $a_{i} \neq b_{i}$ ):
- if $a_{i}<b_{i}$ (line 23), then $f$ is a convergent of $g$, and according to Theorem $1(i v), h=$ $\left[a_{0} ; a_{1}, \ldots a_{i-1}, a_{i}+1\right] ;$
- if $a_{i}=b_{i}+1$ (line 25), then $f=\left[a_{0} ; a_{1}, \ldots a_{i-1}, b_{i}, 1\right]$ and $f$ is an even convergent of $g(i+1$ is even). Using Theorem $1(i v)$ again, $h$ is the next even convergent of $g$. If $b_{i+1}>1$, then $h=$ $\left[a_{0} ; a_{1}, \ldots a_{i-1}, b_{i}, 2\right]$. Otherwise, the next even convergent of $g$ is equal to $\left[a_{0} ; a_{1}, \ldots a_{i-1}, b_{i}, b_{i+1}\right.$, $\left.b_{i+2}, 1\right]=\left[a_{0} ; a_{1}, \ldots a_{i-1}, b_{i}, b_{i+1}, b_{i+2}+1\right]$.
- otherwise, $a_{i}>b_{i}+1$ (line 27), and $f$ and $g$ are not convergent of one another. Theorem 1 states that $h$ is the unique fraction that is a convergent of both $f$ and $g$. It is easy to see that the fraction $h=\left[a_{0} ; a_{1}, \ldots b_{i}+1\right]=\left[a_{0} ; a_{1}, \ldots b_{i}, 1\right]$ is a convergent of both $f\left(\right.$ since $\left.b_{i}+1<a_{i}\right)$ and $g$ (since $b_{i+1} \geq 2$ ).
- The last case, $a_{i} \neq b_{i}$ and $r_{i}(g)=0$ and $r_{i}(f) \neq 0$ (lines $28-33$ ) is symmetrical to the previous one.

Lemma 4. In a computing model where standard arithmetic operations are done in constant time, Algorithm 1 has a complexity of $\mathcal{O}(d)$ where $d$ is the number of partial quotients of $h$.

Proof. The representation of $f$ and $g$ as continued fractions is computed on the fly, and only the partial quotients used to define the result fraction $h$ are computed. The computation of the partial quotients $a_{i}$ and $b_{i}$ consists in one step of the Euclidean algorithm that uses standard arithmetic operations. Thus, the while loop runs in $\mathcal{O}(d)$ time, and all other operations from line 10 to line 33 are done in constant time. The computation of the fraction $h$ from its representation as a continued fraction also runs in $\mathcal{O}(d)$ time since standard arithmetic operations are done in constant time.

## References

[1] T. Granlund, the GMP development team, GNU MP: The GNU Multiple Precision Arithmetic Library, 5th Edition, http://gmplib.org/ (2012).
[2] W. Harvey, Computing two-dimensional integer hulls, SIAM Journal on Computing 28 (6) (1999) 2285-2299.
[3] G. Chrystal, Algebra: An Elementary Text-book for the Higher Classes of Secondary Schools and for Colleges, no. vol. 2, Chelsea Publishing Company, 1964.
[4] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Oxford Mathematics, 2008.
[5] B. Hayes, On the teeth of wheels, Amer. Sci 88 (2000) 296-300.
[6] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd Edition, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1994.

```
Algorithm 1: FractionOfSmallestDenominatorInBetween(Proper fraction \(f\), Proper
fraction \(g\) )
    Input : \(f=\frac{f_{p}}{f_{q}}, g=\frac{g_{p}}{g_{q}}\) such that \(0 \leq f<g \leq 1\)
    Output: \(h\) the fraction of smallest denominator such that \(f<h<g\)
    if \(g_{p} f_{q}-g_{q} f_{p}=1\) then
        \(h \leftarrow \frac{f_{p}+g_{p}}{f_{q}+g_{q}}\)
        return \(h\)
    \(i \leftarrow 0\)
    \(a_{i} \leftarrow\) first partial quotient of \(f\)
    \(b_{i} \leftarrow\) first partial quotient of \(g\)
    while \(a_{i}=b_{i} \mathcal{G} r_{i}(f) \neq 0 \mathscr{G} r_{i}(g) \neq 0\) do
        \(i \leftarrow i+1\)
        compute \(a_{i}\) and \(b_{i}\)
    if \(a_{i}=b_{i}\) then
        if \(r_{i}(f)=0\) then \(f\) is an even principal convergent of \(g\)
                \(h \leftarrow\left[a_{0} ; a_{1} \ldots a_{i-1}, a_{i}, b_{i+1}+1\right]\)
        else \(r_{i}(g)=0\) and \(g\) is an odd principal convergent of \(f\)
            \(h \leftarrow\left[a_{0} ; a_{1} \ldots a_{i-1}, a_{i}, a_{i+1}+1\right]\)
    else
        if \(r_{i}(f) \neq 0 \quad \xi^{\xi} r_{i}(g) \neq 0\) then case \((\mathrm{v})\) of Theorem 1
                \(h \leftarrow\left[a_{0} ; a_{1} \ldots a_{i-1}, \min \left(a_{i}, b_{i}\right)+1\right]\)
        else
            if \(r_{i}(f)=0 \mathcal{G} r_{i}(g)=0\) then \(g\) is a convergent of \(f\) or conversely
                \(h \leftarrow\left[a_{0} ; a_{1} \ldots a_{i-1}, \min \left(a_{i}, b_{i}\right)+1\right]\)
            else
                if \(r_{i}(f)=0\) then
                    if \(a_{i}<b_{i}\) then \(h \leftarrow\left[a_{0} ; a_{1} \ldots a_{i-1}, a_{i}+1\right] f\) is a convergent of \(g, i\) is even
                    else
                    if \(a_{i}=b_{i}+1\) then \(f\) is a convergent of \(g, i\) is odd
                            if \(b_{i+1}=1\) then \(h \leftarrow\left[a_{0} ; a_{1} \ldots a_{i-1}, b_{i}, b_{i+1}, b_{i+2}+1\right]\)
                            else \(h \leftarrow\left[a_{0} ; a_{1} \ldots a_{i-1}, b_{i}, 2\right]\)
                    else \(a_{i}>b_{i}+1\), case (v) of Theorem 1
                    \(h \leftarrow\left[a_{0} ; a_{1} \ldots a_{i-1}, b_{i}+1\right]\)
                else \(r_{i}(g)=0\)
                    if \(b_{i}<a_{i}\) then \(h \leftarrow\left[a_{0} ; a_{1} \ldots a_{i-1}, b_{i}+1\right]\)
                    else
                    if \(b_{i}=a_{i}+1\) then
                            if \(a_{i+1}=1\) then \(h \leftarrow\left[a_{0} ; a_{1} \ldots a_{i-1}, a_{i}, a_{i+1}, a_{i+2}+1\right]\)
                            else \(h \leftarrow\left[a_{0} ; a_{1} \ldots a_{i-1}, a_{i}, 2\right]\)
                    else \(\quad b_{i}>a_{i}+1\)
                    \(h \leftarrow\left[a_{0} ; a_{1} \ldots a_{i-1}, a_{i}+1\right]\)
    return \(h\)
```


[^0]:    Email address: isabelle.sivignon@gipsa-lab.grenoble-inp.fr (Isabelle Sivignon)

[^1]:    ${ }^{1} \mathrm{~A}$ python implementation of this algorithm is available on www.gipsa-lab.fr/~isabelle.sivignon/Code/ simplestFraction.py

