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Bâtiment Nautibus - 8, boulevard Niels Bohr

F-69622 Villeurbanne cedex, France
david.coeurjolly@liris.cnrs.fr

florent.dupont@liris.cnrs.fr

isabelle.sivignon@liris.cnrs.fr

Abstract. truc bidul machin

1 Introduction

3D discrete volumes are more and more used especially in the medical area since
they result from MRI and scanners. As 2D images are composed of pixels, these
3D images are composed of voxels. This structure induces many difficulties in
the exploitation and study of these objects: as each cube is stored, the volume
of data is very huge which is a problem to get a fluent interactive visualization;
the facet structure (voxels’ faces) of the discrete object induces many problems
to get a nice visualization that is necessary for medicines, as no rendering nor
texture algorithm can be applied. The general idea to solve those problems is
to transform discrete volumes into Euclidean polyhedra. An important property
that must fulfill the Euclidean polyhedron is its reversibility up to a given digi-
tization process (e.g. the result of the digitization must be the original discrete
volume itself). In other words, no information are neither created nor lost during
the transformation.

Many research activities have already been achieved to find solutions to this
problem, using Euclidean geometry or discrete geometry . To get a good visual-
ization of discrete volumes, classical methods use the Marching Cubes algorithm
[11, 9], which considers local voxel configurations to replace them by small tri-
angles. Even if these methods offer a good visualization, it does not provide a
good data compression (huge number of facets) but we have a first reversible
solution. Digital geometry solutions deal with a first step that segments the ob-
ject boundary into pieces of digital plane [2, 4, 15, 7, 8, 13]. The digital plane
is a fundamental object for this problem because reversibility properties exist.
The next step consists in associating a polygon to each piece of digital plane
and finally to construct the Euclidean polyhedron while sewing the polygons.
The major problem of these methods is to ensure both the reversibility and the
correct topology of the polyhedron.



In [3], we have proposed a polyhedrization algorithm with the following prop-
erties: it computes a reverse polyhedrization of the input digital object with the
warranty that the obtained polyhedron is topologically correct. More precisely,
the final polyhedron is a combinatorial 2-manifold. This algorithm is based on a
simplification of the Marching-Cubes surface with digital plane segmentation in-
formation. In the following, we extend this algorithm using linear programming
techniques to reduce the number of facets of the final object while preserving
both the reversibility of the surface and its topology.

In section 2, we describe the preliminaries with a review of existing algo-
rithms. In section 3, we detail the Marching-Cubes based simplification algo-
rithm and its optimizations to obtain a polyhedron from a discrete object with
a small number of facets.

2 Digital plane recognition and Marching-Cubes surface

BOFFF

2.1 The Marching-Cubes algorithm

Let us assume a discrete 3D image that maps a value V (x, y, z) ∈ R to each grid
point (x, y, z) ∈ Z

3. The image V can also be considered as a density function
on a subset of Z

3. The Marching-Cubes (MC for short) algorithm was first
introduced by Lorensen and Cline [11] to extract a triangulated surface from V

corresponding to an iso-density value. The first application of this work was the
visualization of iso-density surfaces in medical imaging. We first consider cubic
cells of coordinate (x, y, z) whose vertices are placed on the 8 input samples
(x + i, y + j, z + k) of the volume data, with i, j, k ∈ {0, 1}. The triangulated
iso-surface given by the Marching-Cubes algorithm is locally computed according
to the way of the surface intersects each cell of V using a look-up table with 14
possible configurations (see figure 1). The coordinates of the MC vertices along
an edge of a cell is given by an interpolation process between the values of V

and the chosen iso-level.
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Fig. 1. The 14 different standard triangulations of the Marching-Cubes algorithm.

Note that some of original Lorensen and Cline’s configurations may lead
to ambiguities in the reconstruction and thus construct surfaces with holes. To



have results on the topology of the reconstruction, we need a process that disam-
biguates the configurations according to the topology of the input discrete sur-
face. The configurations presented in the figure 1 correspond to a (18, 6)−surface
[9, 10]. Hence, if the binary object is 6-connected, the triangulated surface is a
combinatorial 2-manifold, i.e. closed, oriented and without self crossing [9, 10].
If a binary object is considered, i.e. if V (x, y, z) ∈ {0, 1}, for all x, y and z, from
[3], we have the following lemma (see figure 2):

GAUSSS et OBQ!!!

Lemma 1 ([3]). The Marching-Cubes surface of a digital object, obtained with a
an iso-level in ]0, 1[, is a reversible polyhedrization of the binary object according
to the Object Boundary Quantization model.

Fig. 2. A binary 3D object and the obtained Marching-Cubes surface.

In the following, the reversible polyhedrization we propose is based on a
simplification of the Marching-Cubes surface.

2.2 Digital Plane segmentation of a discrete surface

Notations {p, q} pour un surfel, ]p, q[
-def plan/preimage -def segm -liens avec ]p,q[ - 1 sommetMC = 1 surfel

-enoncer le theo : si on deplace sur ]pq[ ca change rien

2.3 The reversible reconstruction problem

From the literature, given a segmentation of a discrete surface into digital planes,
we classify the polyhedrization algorithms as follows:

Top-down approaches: we first associate to each piece of digital plane an Eu-
clidean 3D polygon. Hence, the reversibility is assured on these facets by the
digital plane definition. Then, a complex task is performed to glue all the 3D
polygons in order to obtain a well defined surface, while maintaining the re-
versibility property on edges and vertices [7, 5, 12, 14]. During this step, some



patches, i.e. extra 3D polygons, may be locally inserted to sue two polygons.
Another solution to ensure that the reversibility property is maintained on
the edges is to change the DPS recognition process and to consider subsets
of the preimage [6].

Bottom-up approaches: in this case, we start from a reversible and topo-
logically correct surface (e.g. the Marching-Cubes) and we reduce the huge
number of facets using digital plane segmentation information [3]. To ensure
the reversibility and the topology properties of the final polyhedron, we just
have to prove that each elementary modification of the MC surface do not
violate the initial properties.

In the following, we consider the second class of algorithms.

3 Marching-Cubes simplification and optimization

Since there is a one-to-one and onto mapping between the MC vertices and the
surfels of the input discrete object, we introduce a label on MC triangles as
follows:

Definition 1 (Homogeneous and non-homogeneous triangle). Let T be
a triangle of the MC surface, T is homogeneous (H for short) if its three vertices
are associated to surfels belonging to the same digital plane. Otherwise, T is
called non-homogeneous, NH for short). If T is homogeneous, T is labelled with
the digital plane segment label of its vertices.

Furthermore, we can define the 2-NH triangle (resp. 3-NH triangle) if the
number of distinct discrete plane segments associated to its vertices is exactly 2
(resp. 3).

In the following, we introduce a projection process of a MC vertex onto an
Euclidean plane: let v be a MC vertex and p, q be the two voxels (p belongs to
the object and q to the background) such that v is associated the surfel {p, q}.
Thus, only the projection of v onto an Euclidean plane P according to the pq

direction is considered.

3.1 Homogeneous triangles case

Using [3], we have the following result on H-triangles:

Lemma 2 ([3]). Let v be a vertex of an H-triangle, let P be an Euclidean plane
from the preimage of the discrete plane associated to the triangle. The projection
of v onto P does not change neither the reversibility nor its topological properties
of the global surface.

This lemma can easily be proved by definition and properties of the discrete
plane segmentation process and using lemma REF vers le lemme dans la

partie DPS.



In [3], the authors design a simplification algorithm based on the previous
lemma to remove the homogeneous triangles: let S be a connected set of H-
triangle with the same label, they extract from the DPS preimage associated to
S an Euclidean plane P . Then, if we project all vertices of S onto P , triangles in
S become coplanar. Finally, a post-processing step converts all connected sets of
H-triangles with the same label into a single facet. At each step of this algorithm,
we ensure the reversibility property and the final surface is still a combinatorial
2-manifold. Note that no assumption is needed during the choice of the plane P .

As presented in Figure XXXXX, for each connected set of H-triagnle with
the same label, we have obtain a facet. NH-triangles allow to sue together all
the facets maintaining the topological property of the polyherdon.

In the next section, we present a linear programming framework to extract,
from the preimage, an appropriate Euclidean plane P in order to remove NH-
triangles.

3.2 Non-Homogeneous triangles case

The basic idea to remove the NH-triangles consists in adding linear constraints
in the DPS preimages. Then, the choice of the Euclidean plane P is made by a
linear inequality system solver.

However, to have an efficient algorithm, we restrict the problem using the
following two heuristics:

Local analysis: let us examine the 2D reconstruction presented in the figure
3. If we consider the OBQ scheme, both polygons are correct regarding to
the reversibility property. However, the visual aspect of the dashed polygon
compared to the initial binary object is worse than the bold one. Hence, to
restrict our reconstruction to a polyhedron defined in the cells defined by
the MC surface. More precisely, when we a modification of an NH triangle is
performed, the result must belong to the MC cell associated to the triangle.
This heuristic is a restriction on the possible reconstruction but it allows
to design efficient algorithms since the surface properties (reversibility and
topology) can be ensure using local analysis. Other arguments justifying this
approach are based on the fact that the OBQ digitization scheme associated
to MC surfaces is not a complete digitization model [1].

Linear programming problem in dimension 3: during the DPS recogni-
tion process, we have used linear programming algorithms in dimension 3 to
compute the preimages. In this optimization process, the dimension of the
linear constraint system that conducts the NH triangle simplification must
be bounded by 3. Even if this choice influence and reduce the scope of the
algorithm, we limit the computational cost of the linear programming solver.
Futhermore this process is still consistent with the DPS preimage parameter
space.

Using these heuristics, the process can summarized as follows: when a NH
triangle T is considered, two different cases occur if we want to simply the surface
(see Figure 4), we can:



Fig. 3. (left): Two possible polygonalizations of a binary object (dark grey dots). The
grey segment represent the ]pq[ intervals in the OBQ scheme. (right): The light grey
area define the allowed location of the polygon vertices we use (hence only the bold
polygon in the left figure would be considered in our algorithm).

– remove an edge of T : in that case, the edge is collapsed into a point. Fur-
thermore, such a point belong to a face of the MC cell containing T . Hence,
a 2D processing is used to constraint the new point to be in the MC cell (see
figure 5).

– Remove a triangle : the triangle is collapsed into a single point and we have
to ensure that the point belong to the MC cell.
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Fig. 4. Illustration of the removal of an edge and a triangle of the MC surface.

Let T be a NH-triangle, to check if an edge of T can be removed, we consider
the three MC cell faces on which T edges are defined (see figure 5). From the
three edges of T , at least one is such that its vertices do not belong to the same
discrete plane segment. Let P1 and P2 be the two preimages associated to such
edge e. The edge e can be removed if for all P1 ∈ P1 and P2 ∈ P2, the intersection
of P1 and P2 belongs to the MC cell face associated to e. It is not possible to
linearly express those conditions without changing the dimension of the linear
programming problem. To solve that point, we consider two approaches to obtain
sufficient conditions on the intersection of P1 and P2.



Fig. 5. Illustration of the 2-D decomposition of a MC cell into its faces in order to
decide if an edge of a cell triangle can be removed.

Global simplification First of all, we have a global simplification process to
remove NH elements. In this step, we only consider the simple MC configurations,
i.e. the configurations with a single surface patch (1, 2, 3, 5, 8, 9, 11 in the figure
1). In the other configurations, we have to check the intersection of the two
surface patches and we cannot add linear constraints to ensure the topology
during the global simplification. The analysis of these configurations is done
during the greedy simplification.

To obtain sufficient conditions on the intersection of P1 and P2, we can list
three cases (see Figure 6), depending of how many voxels belong to the object
on the considered face of the MC cell.

If we have only one voxel A belonging to the object on a face ABCD, then
we will have the plane P1 associated to surfel {A, B} cross the segment CD

and P2 associated to surfel {A, D} cross the segment BC. Thus we ensure that
the intersection of P1 and P2 is inside the square. If we consider the case where
two voxels belongs to the object on a face, then their is none interesting linear
constraints. If we consider the case where only one voxel C does not belong to
the object on a face ABCD, then we will have the plane P1 associated to surfel
{D, C} cross the segment AB and the plane P2 associated to surfel {B, C} cross
the segment AD. As in the first case, those conditions ensure that the intersection
of the two planes is inside the square (see Figure 6). Finally, these constraints
lead to simple linear constraints in dimension 3 that reduce both the preimages
P1 and P2 to preimages P ′

1
and P ′

2
. Hence, if P ′

1
and P ′

2
are not empty, whatever

P1 ∈ P ′

1
and P2 ∈ P ′

2
, the intersection of P1 and P2 belongs to the face ABCD

of the MC cell, ensuring the reversibility of the modified surface. If one of the
two preimages is empty, the edge is not removed.

Greedy simplification This step consists in fixing planes one by one, to have
more flexible constraints on the preimage of the remaining planes, and to be
able to handle more cases. So the scheme is to fix one Euclidean plane P1 (arbi-
trarily chosen in its associated preimage P1). Then, if T is a NH triangle edge
associated to the DPS represented by the Euclidean plane P1 and another DPS
with preimage P2, we insert linear constraints on P2 to control the intersection
between P1 and P2. Since p1 is given, the intersection point in the MC cell face
can be given in a linear form it the P2 parameter space. Indeed let us consider
that a plane P1 and a mobile plane P2 on a face ABCD (see figure 7), if I is the
intersection of P1 and P2, to ensure that I is inside the square ABCD, we have



y

x

  A

C

B

D

P1

P2

y

x

  A

C

B

D

P1
P2

y

x

  A

C

B

D
P1

P2

Fig. 6. The three possible cases to define sufficient conditions to remove an edge of a
NH triangle.

the constraints:
{

xA < xI < xA + 1
yA < yI < yA + 1

As xA and yA are constants and xI , yI only depend on the P2 parameters, this
equations give linear constraints.
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Fig. 7. Illustration of the greedy simplification approach.

Finally, if we fix a plane P1 for a DPS, we propagate this piece of information
to each neighboring DPS preimages. This process is greedy since we do not
backtrack on the choice of P1. Once all neighboring DPS have been considered,
the greedy step can choose another Euclidean plane in another preimage and
the process repeats.

AUTRES CAS !!!!!

3.3 Overall algorithm

In this section, we skecth the overall simplification algorithm based on the two
approaches presented above.

1. Compute the MC surface
2. Segment the discrete object into digital plane segment
3. Optimization on NH triangles, i.e. find an Euclidean plane in each DP preim-

age:



(a) Step 1 : global optimization
(b) Step 2 : greedy optimization to remove other cases

4. Vertices displacements and simplification of coplanar triangles.

Lemma 3. The algorithm presented above construct a reversible polyhedron which
is a combinatorial 2-manifold.

Proof. The proof is straightforward according to lemma XXX(lemme pq). To
prove the topology, since the MC surface is a combinatorial 2-manifold [9, 10] and
since we can locally prover that treatments on both H triangle and NH triangle
to not change the topology, the final overall surface is still a combinatorial 2-
manifold (see [3] for details on the H triangle treatment). Furthermore, since each
new elements (facets and vertices) belongs to the MC cells in which the surface
is defined, the OBQ digitization of the final polyhedron exactly corresponds to
the input set of voxels. Note that since the topology is preserved, the polyhedral
surface is still oriented and the OBQ digitization scheme is still well defined.�

4 Experiments and results

The figure 8 and the table 1 show some experiments. We can notice that in
all presented cases, the global removal rate is always greeter than 75% which
also holds for most experimented objects. The NH triangle removal shows an
improvment of at least 30% and up to 60% compared to the initial algorithm.

object # MC triangles # NH # removed NH global(and NH) removal rate

pyramid 4 512 170 106 87% (62%)
sphere 5 824 326 164 80% (50%)
rd cube 7 2024 304 271 98% (89%)
sphere 10 3656 1456 535 75% (37%)
catenoid 10 7928 2161 750 82% (35%)

Table 1. Some results of the presented work

5 Conclusion
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