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Abstract. Given a Digital Straight Line (DSL) of known characteris-
tics (a, b, µ), we address the problem of computing the characteristics of
any of its subsegments. We propose a new algorithm as a smart walk
in the so called Farey Fan. We take profit of the fact that the Farey
Fan of order n represents in a certain way all the digital segments of
length n. The computation of the characteristics of a DSL subsegment
is then equivalent to the localization of a point in the Farey Fan. Using
fine arithmetical properties of the fan, we design a fast algorithm of the-
oretical complexity O(log(n)) where n is the length of the subsegment.
Experiments show that our algorithm is faster than the one previously
proposed by Said and Lachaud in [15, 14] for “short” segments.
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1 Introduction

Digital Straight Lines (DSL) and Digital Straight Segments (DSS) have been
known for many years to be interesting tools for digital curve and shape analysis.
The applications range from simple coding to complex multiresolution analysis
and geometric estimators. All these applications require to solve the so-called
DSS recognition problem. Many algorithms, using arithmetics, combinatorics or
dual-space have been proposed to solve this problem, reaching a computational
complexity of O(n) for a DSS of length n. A DSS belongs to infinitely many DSL
of different characteristics, only one DSL enables to define the minimal charac-
teristics of a DSS. In [14], the authors introduce the following problem: given a
DSL of known characteristics and a subsegment of this DSL, compute the mini-
mal characteristics of the DSS. The authors originally encountered this problem
for implementing a fast algorithm to compute a multiresolution representation of
a contour. This problem also arises for the digitization of a segment given by its
two floating-point endpoints: indeed, the slope computed from the endpoints may
be quite far from the minimal characteristics of the digitized segment, especially
if the segment is short. Two algorithms (SmartDSS and ReversedSmartDSS) are
presented in [14, 15]: both use the decomposition into continuous fractions of the
DSL slope and reach a logarithmic complexity.



This problem is however not so new since in [12], the author presents a quick
sketch of a method that solves it using the Farey Fan. The announced complexity
of the method is O(log2 n) for a segment of length n. In this paper, we investigate
further in this direction to provide a thoroughly defined algorithm. Moreover,
we show how its complexity can be lowered to O(log(n)) with an astute use of
arithmetical properties of the Farey Fan. Finally, we compare the performance of
our algorithm with the ones proposed in [14] and [15] and show that it behaves
particularly well for “short” segments.

2 Setting the problem

2.1 Digital line, segment and minimal characteristics

A Digital Straight Line (DSL for short) of integer characteristics (a, b, µ) is the
infinite set of digital points (x, y) ∈ Z2 such that 0 ≤ ax− by+µ < max(|a|, |b|)
(gcd(a, b) = 1)[5]. These DSL are 8-connected and often called naive. The slope
of the DSL is the fraction a

b and µ
b is the shift at the origin. In the following,

without loss of generality, we assume that 0 ≤ a ≤ b. The remainder of a DSL
of characteristics (a, b, µ) for a given digital point (x, y) is the value ax− by+µ.
The upper (resp. lower) leaning line of a DSL is the straight line ax− by+µ = 0
(resp. ax − by + µ = b − 1). Upper (resp. lower) leaning points are the digital
points of the DSL lying on the upper (resp. lower) leaning lines.

A Digital Straight Segment (DSS) is a finite 8-connected part of a DSL. It
can be uniquely defined by the characteristics of a DSL containing it and two
endpoints P and Q. However, a DSS belongs to an infinite number of DSLs.
In this context, the minimal characteristics of a DSS are the characteristics of
the DSL containing it with minimal b [16]. Note that the notions of leaning
points and lines are similarly defined for DSSs. DSS recognition algorithms aim
at computing the minimal characteristics of a DSS, taking profit of the following
fact: (a, b, µ) are the minimal characteristics of a DSS if and only if the DSS
contains at least three leaning points [5]. In this case, the minimal characteristics
are the characteristics of the DSS upper leaning line.

The set of DSLs containing a DSS is usually called the preimage of the DSS.
Given a DSS S, it is defined as P(S) = {(α, β), |α| ≤ 1 | ∀(x, y) ∈ S, 0 ≤
αx− y + β < 1}. The preimage can be represented in the (α, β) space, where α
represents the slope and β the shift at the origin of a straight line.

The preimage of a DSS is a polygon with a well-defined structure that is
directly related to the leaning points and lines defined by its minimal character-
istics [12, 6]. Figure 1 below (from [4]) illustrates this point.

Proposition 1 ([4]). Let P(S) be the preimage of S. Let ABCD be the polygon
defined by this preimage, where A is the upper left most vertex, and the vertices
are named counterclockwise. Following the notations of Figure 1 we have:

– The vertex B maps to the upper leaning line UU ′;
– The vertex D maps to the lower leaning line LL′ translated by the vector

(0, 1) in the digital space;
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Fig. 1. (a) DSS of minimal characteristics (1, 3, 1) with its leaning points U,U ′, L, L′.
(c) Representation of P(S) is the (α, β) space.(b) Each vertex of the preimage maps
to a straight line in the digital space. The vertex B( 1

3
, 1
3
) maps to the upper leaning

line, the characteristics of which are the minimal characteristics of the DSS.

– The vertex A maps to the straight line U ′L+, where L+ = L+ (0, 1);
– The vertex C maps to the straight line UL′+, where L′+ = L′ + (0, 1).

The minimal characteristics of S are (a, b, µ) if and only if B = (ab ,
µ
b ) (p and

q relatively prime). B is called the characteristic point of P(S). Edges [AB]
and [BC] are called lower edges.

2.2 Farey fan

Definition 1 (Ray). Let x and y be two nonnegative integers. The ray defined
by x and y is defined and denoted as follows:

R(x, y) = {(α, β)|β = −xα+ y}

The slope of the ray is x.

Note that x is not the geometrical slope of the ray but its absolute value. In
the following, the order on the slopes is to be understood as the order on the
absolute values of the geometrical slopes.

Definition 2 (Farey Fan). The Farey Fan of order n, denoted by Fn is defined
in the (α, β) space as the arrangement of all the rays R(x, y) such that 0 ≤ y ≤
x ≤ n, and such that 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.

A facet of Fn is a cell of dimension 2 of this arrangement. In the following, a
point of Fn stands for any point v of the (α, β) space (0 ≤ α ≤ 1 and 0 ≤ β ≤ 1)
belonging to a ray, and such that the abscissa of v is a fraction of denominator
smaller than or equal to n.

For any n, it is well known that there is a bijection between the facets of Fn
and the set of DSSs of length n (composed of n+ 1 pixels) [12].
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Fig. 2. (a) Farey Fan of order 6. (b) Illustration of Properties 1 to 4 from Section 3.

Definition 3. Let S be a DSS of length n. Facet(S) is the facet equal to P(S)
in the Farey fan of order n.

Moreover, from Proposition 1, a one-to-one correspondence can be defined
between a facet and the characteristic point of the facet.

Definition 4. Let f be a facet of the Farey fan of order n. We denote by
CPoint(f) the point v of f such that, if v = (pq ,

r
q ), then (p, q, r) are the minimal

characteristics of the DSS Facet−1(CPoint−1(v)).

The Farey Fan of order 6 is depicted in Figure 2(a). The characteristic points
of a few facets are depicted. Note that three types of facets can be identified:

– quadrilateral facets (in orange in Figure 2(a));
– upper triangular facets (in green in Figure 2(a));
– lower triangular facets (in blue in Figure 2(a)).

Consider now the following problem:

Problem 1. Given a DSL L of characteristics (a′, b′, µ′) and two points P (xP , yP )
and Q(xQ, yQ) of this DSL, compute the minimal characteristics (a, b, µ) of the
DSS S = {(x, y) ∈ L | xP ≤ x ≤ xQ}.

After a translation of the characteristics of L such that P is set to the origin
(µ← µ+ axP − byP ), this problem is equivalent to the following one:

Problem 2. Given a point Λ(ab ,
µ
b ) and a point Q(xQ, yQ), find the point v of

the Farey fan of order n = xQ such that Λ ∈ CPoint−1(v).



In other words, the problem is to find the characteristic point of the facet of
Fn containing Λ.

All in all solving Problem 2 is equivalent to performing a point location in
an arrangement of lines. However, the number of facets in the Farey fan of order
n (which is equal to the number of DSS of length n) is in O(n3) [9, 10, 2], and
point location algorithms in such a structure are expensive in term of both time
and space complexity [13]. This brute force approach is then less efficient than
classical DSS recognition algorithms [5, 17, 11, 7].

In the following sections, we revisit the approach proposed by [12] and present
an algorithm to solve Problem 2 in time complexity O(log n), without explicitly
computing the Farey fan. In the next section, we recall several structural and
arithmetical properties of the Farey fan, and derive some very useful corollaries.
These properties are the core of the algorithm detailed in section 4.

3 Properties of the Farey Fan

The Farey series of order n is the set of irreducible fractions in [0, 1] of denom-
inator lower than or equal to n [8]. All the properties below are illustrated in
Figure 2(b) in the Farey fan of order 6. The first three properties are from [12]
and the reader is invited to consult this reference for the proofs, that are fairly
simple.

Property 1 ([12]). The abscissas of intersections of a ray R(x, y) of Fn with other
rays are consecutive terms of a Farey series of order max(x, n− x).

In Figure 2(b), the abscissas of the intersections between the ray R(2, 1),
depicted in red, and the other rays of F6 are consecutive terms of the Farey
series of order 4 = max(2, 6− 2).

Property 2 ([12]). Let fi and fi+1 be two consecutive fractions of the Farey
series of order n. In the interval fi < α < fi+1, there is no intersection of rays.
Thus, in this interval the Farey fan is a simple ladder of rungs.

In Figure 2(b), two ladders are depicted in blue for fi = 1
3 and fi = 2

3 .

Property 3 ([12]). Let v(pq ,
r
q ), 0 ≤ p ≤ q ≤ n, be a point of Fn. Let R(x0, y0)

be the ray of minimum slope passing through v. The other rays passing through
v have a slope equal to x0 + kq with k ∈ Z and x0 + kq ≤ n.

In Figure 2(b), three rays go through the point ( 1
2 ,

1
2 ) (in orange). The slopes

of these rays are equal to x0 = 1, 3 and 5. From this property, we can derive the
following corollary.

Corollary 1. Let v(pq ,
r
q ), 0 ≤ p ≤ q ≤ n, be a point of Fn. Let R(x, y) be a

ray passing through p. R is the ray of smallest slope passing through v if and
only if x− q < 0. It is the ray of greatest slope passing through v if and only if
x+ q > n.



Property 4. Let p
q be a fraction of the Farey series of order n. The intersection

between the line α = p
q and Fn is exactly the set of points (pq ,

r
q ) where r takes

all the integer values between 0 and q.

Proof. We study the intersection between R(x, y) defined by the equation β =
−αx + y and α = p

q . We get β = −px+qy
q . For 0 ≤ y ≤ x ≤ q ≤ n, the quantity

−px+qy takes all the integral values in the interval [|0, q|], which ends the proof.

In Figure 2(b), the intersection between α = 4
5 (depicted in green) and Fn is

the set of points ( 4
5 ,

r
5 ) with r ∈ Z, 0 ≤ r ≤ 5. Using Properties 2 and 4, we can

prove the following result to compute the ray of smallest slope in a given point.

Corollary 2. Let v(pq ,
r
q ), 0 ≤ p ≤ q ≤ n, be a point of Fn. Let p′

q′ be the fraction

following p
q in the Farey Series of order n. The ray of smallest slope passing

through v is defined by the point v and the point of coordinates v′(p
′

q′ ,
b rq′q c
q′ ).

Proof. From Property 2, Fn is a ladder in the interval [pq ,
p′

q′ ], which means there
is no intersection of rays in this interval. From Property 4, we know that there is
at least one ray passing through the point v. Again from Property 4, all the rays

passing through v cut the line of equation α = p′

q′ in a point v′(p
′

q′ ,
r′

q′ ), r
′ ∈ Z,

0 ≤ r′ ≤ q′. Among all these rays, the ray of smallest slope is the one that

passes through the point vmax(p
′

q′ ,
rmax

q′ ) where rmax is the maximal value of r′

such that r′

q′ ≤
r
q . rmax is given by b rq

′

q c which ends the proof.

4 Fast walk in the Farey Fan

Following Problem 2, we look for the characteristic point of the facet of F(n)
containing a given point Λ(ab ,

r
b ). From Proposition 1, Section 2.2 and Property

4 we have the following characterization of the characteristic point.

Property 5. A point v(pvqv ,
rv
qv

) is the characteristic point of a facet if and only if:

1. either v is the intersection of the two lower edges:
(a) the ray supporting the right lower edge is the one of smallest slope in v;
(b) the ray supporting the left lower edge is the one of greatest slope in v;

2. or v is on the unique lower edge and more than one ray passes through the
point (pvqv ,

rv+1
qv

)

As in [12], the algorithm consists of three steps that are detailed in the
following sections:

1. Find the ladder to which Λ belongs;
2. Locate the highest ray that lies on or below Λ: this ray supports a lower

edge of the facet (Section 4.2, Algorithm 1);
3. Walk along the ray(s) to determine the characteristic point (Section 4.3,

Algorithm 2).

Particular cases where Λ is a point of Fn (either on a ray, or a vertex) are
eluded, so that the focus is done on the general case. However, these particular
cases are not complicated to handle.



4.1 Find the ladder

Given a point Λ(ab ,
µ
b ), finding the ladder to which Λ belongs in Fn is equivalent

to finding the two fractions with a denominator smaller than n closest to a
b

(greater and lower). We look for two fractions f = p
q and g = p′

q′ such that

q ≤ n, q′ ≤ n, f ≤ a
b ≤ g, and there is no fraction of denominator smaller or

equal to n neither between f and a
b nor between a

b and g.
This problem is closely related to the computation of the best rational ap-

proximation of a number, for which solutions using the decomposition into con-
tinuous fractions exist [8]. However, we do not need only the best approximation,
which is either the closest lower or closest greater fraction, but also the other
one. To solve this problem, we use the algorithm of Charrier and Buzer [3]. This
algorithm aims at computing the approximation of any real number by rational
numbers of bounded denominator and straightforwardly solves our problem in
O(log(n)). Moreover the algorithm is simple to implement and does not require
continuous fractions computations.

4.2 Locate a lower edge

At this point, we work in a ladder defined by two fractions f = p
q and g = p′

q′

of Fn. This step consists in localising Λ in the ladder by computing the highest
ray under Λ in Fn. In [12], this step is performed as a binary search among the
rays of the ladder. However, each stage of the binary search requires to solve a
diophantine equation with the extended Euclidean algorithm, reaching a total
complexity of O(log2 n).

Our algorithm, presented in Algorithm 1 and illustrated in Figure 3, also
performs a dichotomy (line 4), but only on the rays of smallest slope passing
through the points of abscissa p

q (in red in Figure 3).
Thanks to Property 4, this set of points can be defined as on line 1, and the

rays of smallest slope are computed in time O(1) in the ladder using Corollary 2
(line 2). On line 4, the ray of greatest slope is computed from the ray of smallest
slope thanks to Property 3. On line 5, the value x is not an integer value, but
the closest lower ray can be easily computed using Property 3.

Algorithm 1: Search in the ladder

Let vi = (pq ,
i
q ), i ∈ Z, 0 ≤ i ≤ q1

Let Ri(xi, yi) be the ray of smallest slope passing through vi2

Perform a dichotomy on the Ri to compute j ∈ [|0, q − 1|] such that Λ is3

above Rj and below Rj+1

if Λ is under the ray of greatest slope through vj+1 then Return Rj4

else
Compute the slope x of the line passing through vj+1 and Λ5

Compute [x] as the value xj+1 + kq nearest to and lower than x, k ∈ Z6

Return R([x], (j+1)+p.[x]
q )7



In Figure 3, on the left, the point Λ is located under the ray of greatest slope
passing through vj+1 (in green, line 4 in Algorithm 1), Rj is returned. On the
right, the point Λ is in between the rays passing through vj+1 : the slope of the
line passing through vj+1 and Λ is computed (in blue, line 5 in Algorithm 1),
and is rounded to find the nearest lower ray.
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Fig. 3. Illustration of Algorithm 1: the dichotomy is performed on the red rays only.

4.3 Find the characteristic point

Let us denote by M and N the two points defined as the intersection between the
ray R(x, y) returned by Algorithm 1 and the vertical lines defining the ladder,

i.e. α = p
q and α′ = p′

q′ as defined in Section 4.1. The segment [MN ] is part of a
lower edge of the facet of Fn containing Λ in Fn.

The first step of the algorithm detailed in Algorithm 2 is to compute the
extremities of the lower edge containing [MN ]. To do so, the key point is to use
Property 1 to characterize the points of intersection between a ray and other
rays. Given a ray R(x, y) of the Farey Fan Fn and a point v(pq ,

r
q ) on this ray, v

is the crossing point of several rays if and only if q ≤ max(x, n − x). Thus, the
abscissa of the left (resp. right) extremity of the lower edge is given by the term
of the Farey series of order max(x, n − x) lower than (resp. greater than) and

closest to p
q (resp. p′

q′ ) (line 1 of Algorithm 2). Given a fraction, computing the
next term in a Farey series of given order cannot be solved in constant time but
requires a call to the extended Euclidean algorithm. From these two fractions

p

q

and p
q we compute the two points O of R with abscissa equal to

p

q and O of R

with abscissa equal to p
q (line 2).



At this point, [OO] is a lower edge of the facet containing Λ. Then, the three
cases illustrated in Figure 4 can occur: either O or O is the characteristic point
(case (a) and (b)), or not (case (c)). We use Property 5 to distinguish between
these cases:

– if R is the ray of smallest slope in O, then O is the characteristic point: the
condition line 3 refers to Corollary 1;

– if R is the ray of greatest slope in O, then O is the characteristic point: the
condition line 4 refers to Corollary 1;

– otherwise, the facet is lower triangular, and the abscissa of the characteristic
point is given by the mediant of the abscissae of the lower edge extremities,
i.e. O and O (direct consequence of Property 1): on line 5, the mediant is
computed, and the point of R with this abscissa is the characteristic point.

Algorithm 2: Find the characteristic point

Let R(x, y) be the ray output by Algorithm 1

Let M( p
q
, r
q
) and N( p′

q′ ,
r′

q′ ) belonging to R

Let
p

q
and p

q
be the fractions before p

q
and after p′

q′ in the Farey Series of order1

max(x, n− x).
Let O (resp. O) be the intersection point between α =

p

q
(resp. p

q
) and R2

if x− q < O then Return O else3

if x+ q > n then Return O else4

Let p̃
q̃

=
p+p

q+q
. Return the intersection point between α = p̃

q̃
and R5

M N
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Fig. 4. Three cases for the lower edge [OO]: (a) all the rays passing through O (in
blue) have a slope greater than x and O is the characteristic point; (b) all the rays
passing through O (in blue) have a slope smaller than x and O is the characteristic
point; (c) neither O nor O is the solution, and the characteristic point is found with a
mediant computation.



4.4 Complexity

Lemma 1. The complexity of the algorithm described in Section 4 is in O(log(n)),
where n is the length of the DSS.

Proof. We assume a computing model where standard arithmetic operations are
done in constant time. Finding the ladder is done using the algorithm of Charrier
and Buzer [3] that has a complexity of O(log(n)).

The localization of a lower edge is done with Algorithm 1: the computation of
the Ri (line 2) does not have to be done as a precomputation since the dichotomy
(line 3) can be performed on the indices i. Thus they are computed on the fly
and only when necessary, and the complexity of these two lines is in O(log(q))
with q ≤ n. The operations done in lines 4 to 7 are done in constant time, and
the complexity of Algorithm 1 is in O(log(q)).

Algorithm 2 performs the last step of the algorithm. On line 1, two calls
to the extended Euclidean algorithm are necessary to compute the lower edge
extremities, which takes O(log(n)). All the other operations of this algorithm
take O(1), which ends the proof.

Algorithm 2 can actually be optimized so that the call to the extended Eu-
clidean algorithm (line 1) is not always necessary. These optimizations consist in
the study of particular cases that are not presented here to keep the algorithm
as clear as possible. All in all they do not change the theoretical complexity but
lower the constant term, and slightly improve the practical efficiency.

This algorithm solves Problem 2 in O(log(n)) where n is the order of the
Farey fan. From the equivalence of Problems 1 and 2, this algorithm also solves
Problem 1 in logarithmic time where n is the length of the DSS.

5 Experimentation

We have implemented the presented algorithm using the open-source library
DGtal [1]1. The algorithm is very easy to implement and does not require contin-
uous fractions implementation as in [14, 15]. The algorithms of Said and Lachaud
[14, 15] being implemented in this library, comparing the algorithms was then an
easy task. We also conducted the experimentation along the same protocol as
the one they proposed as a test file in DGtal. Basically, the idea is to randomly
choose a maximal value N for the parameter b of the DSL (a is smaller than
b), then fix a maximal value for the length n of the DSS, and finally randomly
choose a shift µ and the abscissa of the DSS first point. Each experiment is
conducted for 10000 randomly chosen parameters.

The algorithms are executed to compute the characteristics of the DSS con-
tained in the DSL. For each algorithm, the total running time is measured and
divided by the total number of trials.

1 The C++ code of this algorithm is freely available on the webpage http://www.

gipsa-lab.grenoble-inp.fr/~isabelle.sivignon.



Figure 5 represents the results obtained for N = 106 in (a) , N = 109 in (b)
and n taking all the value of the form 10.2k in the interval [10, N ]. The graph
represents the execution time in ms versus the maximal length n of the DSS.

The first observation is that SmartDSS is clearly slower than the other two
algorithms. The second observation concerns the behaviour of the curves: the
execution time increases with n for our algorithm while it decreases for Re-
versedSmartDSS. This is consistent with the complexities of the algorithms. The
complexity of our algorithm is logarithmic in the length of the DSS while the
complexity of ReversedSmartDSS depends on the difference of depth of the slope
of the DSL and the slope of the DSS. Consequently, our algorithm is more effi-
cient for short DSSs, while for ReversedSmartDSS, the greater is n, the smaller
is the difference of slopes, and the more efficient is the algorithm.

It is thus interesting to study the value of n for which the two curves cross
each other. We see in Figure 5 that this value is 104 for N = 106 and 106 for
N = 109. Other experiments show that this value is 103 for N = 104 and that
the threshold ratio n

N below which our algorithm is faster tends to decrease with
N .
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Fig. 5. Runtime comparison of our algorithm and the algorithms of [14, 15]

6 Conclusion

We have proposed an algorithm to compute the characteristics of a DSS which
is a subsegment of a DSL of known characteristics. We use the Farey fan and
its numerous arithmetical properties to design a very efficient both theoretically
and practically, and easy to implement algorithm to solve this problem.

We prensented the algorithm in the case where the DSL parameters are
rational fractions. However, it can be straightforwardly extended to deal with
irrational parameters.

The exprimental section has shown that our algorithm is faster than the
ReversedSmartDSS algorithm when the length of the DSS is sufficiently smaller



than the DSL period. This suggests that the ReversedSmartDSS algorithm should
be prefered when the DSL parameters are issued from the recognition of a DSS
on an image, and that our algorithm would perform better to draw a DSS given
by floating-point vertices on an image. It would however be interesting to deepen
this comparison.
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