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Abstract. This paper addresses the problem of converting a 2d digital
object, i.e. a set 𝑆 of points in ℤ2, into a finite union of balls ℬ centered
on ℝ2, such that the digitization of ℬ is exactly 𝑆 and the cardinality of
ℬ is minimum. We prove that, for the specific case of 2d hole-free digital
objects, there exists a greedy polynomial-time algorithm. The algorithm
is based on the same principle as the simple greedy optimal algorithm for
the interval cover problem. After bringing to light under which conditions
the latter algorithm can be extended to tree-like structures, we show that
such a structure can be defined for any hole-free 2d digital object, so that
the extended algorithm applies.
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1 Introduction

Computer representation of shapes is a basic component to digitize, create, vi-
sualize or exchange models of physical objects. Different geometric models exist,
either to represent the surface (B-rep, point clouds, triangle meshes) or the vol-
ume (tetrahedral meshes, digital objects, CSG models) of a solid shape. However,
the model used to create or register a shape is not always the one tailored for
subsequent processings or applications. Thus, the problem of converting one ge-
ometric model into another has been widely studied, for a variety of models.
In particular, many provably good conversion algorithms have been designed to
output a finite union of balls from other models, including point clouds, polyg-
onal meshes or digital shapes. Indeed, being composed of very simple geometric
shapes, finite union of balls are useful in a number of applications, for instance
detection of collisions in computer graphics [6], or simulation of physical pro-
cesses [12]. Various metrics can be used to measure the quality of the conversion
such as the number of balls, or the difference in volume between the original
model and the union of balls.

In this article, we consider the following problem:



Problem 1. Given a 2d digital object 𝑆, compute a finite union of balls ℬ such
that: ℬ covers exactly the points of 𝑆 (and no point of ℤ2\𝑆), and the cardinality
of ℬ is minimum.

This problem is closely related to the more constrained problem where the
balls of ℬ must be centered in ℤ2, which is NP-hard [7]. It is also very close to
the class of well-studied set cover problems that are also NP-hard [8]. The input
of the set cover problem is a pair (𝑋, ℛ), where 𝑋 is a set of points (generally
in ℝ𝑛) and ℛ is a family of subsets of 𝑋 called ranges. The problem is to find
a minimum subset of ℛ that covers all the points of 𝑋. In our problem, 𝑋 = 𝑆
is a subset of ℤ2. However, the set of ranges ℛ is not part of the input, but is
constrained to be a set of balls centered on ℝ2.

We show that, when 𝑆 is a 4-connected digital object and ℤ2\𝑆 = 𝑆𝑐 has
exactly one 8-connected component, the problem can be seen as a variant of the
interval covering problem (1d set cover problem) for which an optimal greedy
algorithm exists. The idea was introduced in [13] in the specific case of (𝛿, 𝜀)-
ball approximation problem: given a shape 𝑆, compute a finite union of balls
included in the 𝛿-dilation of 𝑆 while covering its 𝜀-erosion. It was shown that,
while the general problem is NP-hard [4], a greedy optimal algorithm exists when
the 𝛿-dilation of 𝑆 has a cycle-free medial axis [14].

In Section 2, we revisit the results of [14, 13] in a more general context. We
consider the case where the input is a generic set of ranges and exhibit sufficient
conditions on this set to ensure that the greedy algorithm is optimal in this
setting. Once the good tools and conditions have been defined, the proofs of
termination and optimality unfold as in [14, 13]. In Section 3, we show how to
implement this algorithm to compute an exact and optimal conversion of a 2d
hole-free digital object into a finite union of balls.

2 General optimal greedy algorithm

2.1 Algorithm specification

For the sake of simplicity, given a subset of ranges 𝑅 we denote ⋃ 𝑅 = ⋃𝑟∈𝑅 𝑟.
We use the same vocabulary as in [14, 13] in the broader context of sets of ranges.
A covering of a set of ranges ℛ is a subset of ℛ that covers all the points in ⋃ ℛ.
More formally,

Definition 1 (Covering). Let ℛ be a set of ranges, and 𝑅 be a subset of ℛ.
We say that 𝑅 is a covering of ℛ if ⋃ 𝑅 = ⋃ ℛ.

A covering 𝑅 is said to be minimal if no range can be removed from 𝑅 while
keeping the covering property, and minimum if its cardinality is minimum among
all possible coverings. In the following, we assume that ℛ can be endowed with
a partial order ⪯ such that the poset (ℛ, ⪯) is anti-arborescent:

Definition 2 (Anti-arborescence [9]). A poset (𝑉 , ⪯) is anti-arborescent if:



– for all 𝑣 ∈ 𝑉, the set of its successors {𝑣′ ∈ 𝑉 , 𝑣 ≺ 𝑣′} is totally ordered.
– for any two incomparable elements 𝑣, 𝑣′ ∈ 𝑉, the predecessors of 𝑣 and the

predecessors of 𝑣′ are pairwise incomparable.

A range 𝑟 ∈ ℛ is said to be maximal (resp. minimal) in 𝑅 ⊆ ℛ if for all
𝑟′ ∈ 𝑅, either 𝑟′ ⪯ 𝑟 (resp. 𝑟′ ⪰ 𝑟) or 𝑟′ and 𝑟 are incomparable. Given a range
𝑟 ∈ 𝑅, we define the domain covered by ranges smaller than 𝑟 : 𝐶(ℛ, ⪯ 𝑟) =
(⋃𝑟′∈ℛ,𝑟′≺𝑟 𝑟′)\𝑟. Similarly, we define the domain covered by ranges larger than
or incomparable to 𝑟 : 𝐶(ℛ,�𝑟) = (⋃𝑟′∈ℛ,𝑟′�𝑟 𝑟′)\𝑟. Remark that by definition,
if 𝑟1 ⪯ 𝑟2 then 𝐶(ℛ, ⪯𝑟1) ∪ 𝑟1 ⊆ 𝐶(ℛ, ⪯𝑟2) ∪ 𝑟2 and 𝐶(ℛ,�𝑟1) ∪ 𝑟1 ⊇ 𝐶(ℛ,�
𝑟2) ∪ 𝑟2. It will also be useful later to extend these definitions to a set of ranges
𝑅 ⊆ ℛ: 𝐶(ℛ, ⪯𝑅) = ⋃𝑟∈𝑅 𝐶(ℛ, ⪯𝑟) and 𝐶(ℛ,�𝑅) = ⋂𝑟∈𝑅 𝐶(ℛ,�𝑟).

Figure 1(c) illustrates these notations in the case of ranges being balls -
ℛ = ℬ: a partial order ⪯ on the balls of ℬ is depicted using arrows on the
set of centers of the balls (in red). (ℬ, ⪯) being an anti-arborescence, it has a
root, indicated with a cross. The sets 𝐶(ℬ, ⪯ 𝒷) and 𝐶(ℬ,� 𝒷) are depicted
respectively in green and orange for a specific ball 𝒷 outlined in dashed gray.

Definition 3 (Partial covering). Let ℛ be a set of ranges, and 𝑅 be a subset
of ℛ. We say that 𝑅 is a partial covering of ℛ if it is a covering of 𝐶(ℛ, ⪯𝑅),
i.e. 𝐶(ℛ, ⪯𝑅) ⊆ ⋃ 𝑅.

Definition 4 (Candidate range). Let 𝑅 ⊂ ℛ be a partial covering of ℛ. A
range 𝑟 ∉ 𝑅 is candidate to 𝑅 if 𝑅′ = 𝑅 ∪{𝑟} is also a partial covering of ℛ and
⋃ 𝑅 ⊊ ⋃ 𝑅′.

A candidate range 𝑟 with respect to 𝑅 is said to be maximal if it is maximal
in the set of candidate ranges. Algorithm 1 describes a greedy algorithm that
computes a covering given a finite set of ranges ℛ. It uses the fact that, if (ℛ, ⪯)
is anti-arborescent, a topological ordering of the elements of ℛ can be defined.
The idea is pretty natural: considering ranges in topological order, if a range is
critical for the set of uncovered points, then it is added to the covering.

Algorithm 1: GreedyCovering(ℛ,⪯)
Preconditions: ℛ is finite, (ℛ, ⪯) is an anti-arborescent poset

1 𝑅 ← ∅;
2 𝑈 ← ⋃ ℛ (points of ⋃ ℛ not in ⋃ 𝑅);
3 for 𝑟 ∈ ℛ, in topological order do
4 if 𝑟 is a maximal candidate for 𝑈 then
5 𝑅 ← 𝑅 ∪ {𝑟};
6 𝑈 ← 𝑈\𝑟

7 return 𝑅



By definition of candidate range, and since Algorithm 1 only inserts candidate
ranges to the computed covering, an invariant of Algorithm 1 is that 𝑅 is always a
partial covering of ℛ. The next section is dedicated to the proof of the fact that,
provided that ℛ fulfills two extra conditions, candidate ranges to non-empty
subsets always exist (proving that Algorithm 1 terminates with a covering), and
that Algorithm 1 computes a minimum-cardinal covering.

2.2 Correctness, termination and optimality of Algorithm 1

In the following, we prove that if the poset (ℛ, ⪯) fulfills the two conditions
below, Algorithm 1 terminates and computes a minimum covering :

Property (1) for any 𝑟1, 𝑟2 ∈ ℛ such that 𝑟1 ∩ 𝑟2 ≠ ∅, for all 𝑟1 ≺ 𝑟 ≺ 𝑟2,
𝑟1 ∩ 𝑟2 ⊆ 𝑟.

Property (2) for 𝑥 ∈ ⋃ ℛ, let 𝐶𝑜𝑣(𝑥, ℛ) = {𝑟 ∈ ℛ, 𝑥 ∈ 𝑟} ; then ∀𝑥 ∈ ⋃ ℛ,
𝐶𝑜𝑣(𝑥, ℛ) admits a greatest element that is called the critical range of 𝑥
and is denoted Crit(𝑥, ℛ).

The proof of optimality requires several technical lemmas. These lemmas
were stated and proven in [14, 13] for a specific family of ranges. We show here
that they are still valid when the set of ranges fulfills above properties. The
proofs are in general very similar, and simply call properties (1) or (2) when
necessary. Space being limited, we only provide the most relevant ones.

The first lemma shows that any range 𝑟 separates the elements of ⋃ ℛ into
three disjoint subsets of elements: those before, those in, and those after.

Lemma 1 (Proposition 4.10 [13]). Let 𝑟 ∈ ℛ. For any 𝑥 ∈ ⋃ ℛ, 𝑥 belongs
to one and only one of the three subsets 𝑟, 𝐶(ℛ, ⪯𝑟), 𝐶(ℛ,�𝑟).

Proof. By definition, 𝑟 is disjoint from 𝐶(ℛ, ⪯ 𝑟) and 𝐶(ℛ,� 𝑟). Suppose now
that there exists an element 𝑥 ∈ ⋃ ℛ such that 𝑥 ∈ 𝐶(ℛ, ⪯ 𝑟) ∩ 𝐶(ℛ,� 𝑟). Let
𝑟− ≺ 𝑟 such that 𝑥 ∈ 𝑟−\𝑟 and 𝑟+ such that 𝑟 ≺ 𝑟+ or 𝑟+ and 𝑟 are incomparable
and 𝑥 ∈ 𝑟+\𝑟. By definition, 𝑥 ∉ 𝑟 but 𝑟− and 𝑟+ are in 𝐶𝑜𝑣(𝑥, ℛ). By property
(2), 𝐶𝑜𝑣(𝑥, ℛ) admits a greatest element 𝑟𝑀 = Crit(𝑥, ℛ), i.e. 𝑟− ⪯ 𝑟𝑀, 𝑟+ ⪯ 𝑟𝑀
and 𝑥 ∈ 𝑟𝑀. If 𝑟𝑀 = 𝑟−, then 𝑟+ ⪯ 𝑟− ≺ 𝑟, a contradiction. Thus 𝑟𝑀 is a strict
successor of 𝑟−, as 𝑟. By Definition 2, they are comparable. If 𝑟 ≺ 𝑟𝑀, then by
property (1), 𝑟− ∩𝑟𝑀 ⊆ 𝑟, leading to a contradiction since 𝑥 ∈ 𝑟− ∩𝑟𝑀. If 𝑟𝑀 ≺ 𝑟,
then 𝑟 is a successor of 𝑟𝑀 which is either a successor of 𝑟+ or 𝑟+ itself. Then
𝑟+ ≺ 𝑟 which is a contradiction with the fact that either 𝑟 ≺ 𝑟+ or 𝑟 and 𝑟+ are
incomparable. ⊓⊔

The following two lemmas were not stated as such in [14, 13], but used in
the proofs. Lemma 2 shows that, given a partial covering, there always exists a
candidate.

Lemma 2. Let 𝑅 ⊆ ℛ be a minimal covering of ℛ. Let 𝑅− ⊊ 𝑅 be a partial
covering, and 𝑅+ = 𝑅\𝑅−. Then any range 𝑟+ minimal in 𝑅+ is candidate to
𝑅−.



The proof is similar to part of the proof of Lemma 4.27 [13] and calls Lemma
1 to assert that the points of 𝐶(ℛ, ⪯𝑟+) are disjoint from 𝑟+ ∪ 𝐶(ℛ,�𝑟+) and
thus cannot be covered by ranges in 𝑅+. Lemma 2 implies in particular that
any range 𝑟 = 𝑚𝑖𝑛𝑥∈(⋃ ℛ)\𝑅𝐶𝑟𝑖𝑡(𝑥, ℛ) is a candidate to 𝑅 (there may be several
incomparable candidates). By definition of Crit(𝑥, ℛ), any range 𝑟′ ≻ 𝑟 does
not contain the point 𝑝 = arg min𝑥∈(⋃ ℛ)\𝑅 Crit(𝑥, ℛ), 𝑝 ∈ (⋃ ℛ)\𝑅, so that 𝑟 is
actually a maximal candidate to 𝑅.

Lemma 3. Let 𝑅 ⊆ ℛ be a minimal covering of ℛ. Let 𝑅− ⊊ 𝑅 be a partial
covering, and let 𝑟 be a candidate to 𝑅−. Then any range 𝑟′ ∈ ℛ\𝑅− such that
𝑟′ ≺ 𝑟 is also a candidate to 𝑅−.

Proof. Suppose by contradiction that there exists a range 𝑟′ ≺ 𝑟 that is not a
candidate to 𝑅−. Then there exists a point 𝑥 ∈ 𝐶(ℛ, ⪯(𝑅−∪{𝑟′})) which is not in
𝑅−∪{𝑟′}. If 𝑥 were in 𝐶(ℛ, ⪯𝑅−), it would be covered by 𝑅− since 𝑅− is a partial
covering, a contradiction. So 𝑥 ∉ 𝐶(ℛ, ⪯𝑅−), which implies 𝑥 ∈ 𝐶(ℛ, ⪯𝑟′). By
definition of 𝐶, there exists a range 𝑟″ ≺ 𝑟′ that contains 𝑥. If 𝑥 ∈ 𝑟, then by
Property (1), we get 𝑥 ∈ 𝑟′, a contradiction. Thus 𝑥 ∉ 𝑟. By transitivity of ≺,
we have 𝑟″ ≺ 𝑟. Using the fact that 𝑥 ∉ 𝑟, and by definition of 𝐶, we have
𝑥 ∈ 𝐶(ℛ, ⪯𝑟). Again by definition of 𝐶, we have 𝐶(ℛ, ⪯𝑟) ⊆ 𝐶(ℛ, ⪯(𝑅− ∪ 𝑟)).
𝑟 being candidate to 𝑅−, 𝐶(ℛ, ⪯(𝑅− ∪ 𝑟)) ⊆ ⋃(𝑅− ∪ {𝑟}), a contradiction. ⊓⊔

Combining the previous lemmas, we can prove that, to complete a partial
covering 𝑅−, it is necessary to add a range that is smaller than or equal to a
maximal candidate to 𝑅−.

Proposition 1 (Lemma 4.27 [13]). Let 𝑅 ⊆ ℛ be a minimal covering of ℛ.
Let 𝑅− ⊊ 𝑅 be a partial covering, and let 𝑟 be a maximal candidate to 𝑅−. Then
𝑅\𝑅− contains a candidate range that is smaller than or equal to 𝑟.

Theorem 1 (Theorem 10 [13]). Let ℛ be a finite set of ranges. Suppose that
ℛ can be endowed with a partial order ⪯ such that (ℛ, ⪯) is an anti-arborescent
poset, and fulfills Properties (1) and (2). Then, Algorithm 1 outputs a cardinal
minimum covering of ℛ.

The proofs of the proposition and of the theorem follow exactly the ones of
Lemma 4.27 and Theorem 10 in [13]. The proof of Proposition 1 calls Lemmas 2
and 3, and the proof of Theorem 1 appllies Proposition 1 to replace one by one
the ranges of any optimal covering by the ranges computed by Algorithm 1.

3 From a digital set to a set of ranges

In this section, we show how Algorithm 1 can be used to solve Problem 1. Here,
ranges are balls. Given a digital object 𝑆, a set of balls fulfilling Theorem 1
hypothesis is defined. Moreover, this set is such that the result of Algorithm 1
is indeed a collection of balls of minimum cardinality that covers 𝑆 exactly.



Let 𝑆 ⊂ ℤ2 be a finite 4-connected digital object such that 𝑆𝑐 = ℤ2\𝑆 has
one exactly 8-connected component. A digital ball 𝑏 is a subset of ℤ2 for which
there exists a ball 𝒷 such that ̊𝒷 ∩ ℤ2 = 𝑏, where ̊𝒷 denotes the interior of 𝒷.
Otherwise said, if 𝐷𝑖𝑔 denotes the Gauss digitization function, we have which
𝐷𝑖𝑔(𝒷) = ̊𝒷 ∩ ℤ2 = 𝑏. In the following, we assume that balls 𝒷 are open, so that

̊𝒷 = 𝒷. The preimage of a digital ball 𝑏, denoted 𝐷𝑖𝑔−1(𝑏) will be useful later on.
A digital ball 𝑏 is said to be valid for a digital object 𝑆 if 𝑏 ⊆ 𝑆. It is said to be
maximal if there is no other valid digital ball containing it.

Given a digital object 𝑆, we aim at finding a set of ranges ℬ that are (non
empty) valid digital balls and such that ⋃ ℬ = 𝑆. Given a set of ranges as input,
Algorithm 1 computes a minimum covering for this set of ranges. In order to
obtain the minimum covering of a digital object 𝑆, the input set of ranges ℬ
must contain all maximal digital balls valid for 𝑆. For instance, taking the set
of balls ouput by a distance transform of 𝑆 is not enough to ensure optimality:
indeed, all the balls of this set have a center in ℤ2, so that it misses all digital
balls for which 𝐷𝑖𝑔−1(𝑏) contains only balls of center not in ℤ2.

The next sections are dedicated to exhibiting a way to grasp the set of all
valid maximal digital balls and showing that this set can be endowed with an
anti-arborescent poset structure that fulfills sufficient properties (1) and (2).

3.1 Getting a grip on valid maximal digital balls

The center of a ball 𝒷 is denoted by 𝑐(𝒷). For 𝑝 ∈ ℤ2, let pixel(𝑝) be the unit
square centered on 𝑝. For any ball 𝒷 such that 𝑐(𝒷) ∈ 𝑝𝑖𝑥𝑒𝑙(𝑞), 𝑞 ∈ 𝑆𝑐, either
𝐷𝑖𝑔(𝒷) = ∅ or 𝐷𝑖𝑔(𝒷) ∩ 𝑆𝑐 ≠ ∅. These balls do not contribute to the set of
valid maximal digital balls and can be discarded. Consequently we define 𝒮 =
⋃𝑝∈𝑆

̊pixel(𝑝) and restrict the study to this set. For 𝑥 ∈ 𝒮, let 𝒷𝑆(𝑥) be the
maximal ball centered in 𝑥 such that 𝐷𝑖𝑔(𝒷𝑆(𝑥)) ⊆ 𝑆. Note that by maximality,
𝜕𝒷𝑆(𝑥) contains at least one point of 𝑆𝑐. The following Lemma shows that any
valid maximal digital ball has a ball in its preimage with at least two points of
𝑆𝑐 on its boundary.

Lemma 4. Let 𝑏 be a valid maximal digital ball for 𝑆. Then there exists 𝒷 such
that 𝐷𝑖𝑔(𝒷) = 𝑏 and |𝜕𝒷 ∩ 𝑆𝑐| ≥ 2.

Proof. Let 𝒷′ be a ball such that ̊𝒷′ ∩ ℤ2 = 𝑏. If 𝜕𝒷′ ∩ 𝑆𝑐 = ∅, then we increase
the radius of 𝒷′ until 𝒷′ = 𝒷𝑆(𝑐(𝒷′)). 𝜕𝒷′ contains at least one point of 𝑆𝑐. Now
we use a classical projection from a set of balls to the balls of the medial axis
of a shape [11, 10]. The shape considered here is the whole space ℝ2 punctured
by the discrete set 𝑆𝑐. In this simple case, the medial axis is simply the set of
edges of the Voronoi diagram of 𝑆𝑐, i.e. 𝜕Vor(𝑆𝑐). The projection is illustrated
in Figure 1: it associates to any ball 𝒷 a ball 𝜋(𝒷) centered on 𝜕Vor(𝑆𝑐) and such
that 𝒷 ⊆ 𝜋(𝒷). This projection is well defined since 𝑆 is finite (in particular, no
half-space is void of points of 𝑆𝑐). Consider the ball 𝜋(𝒷′). If 𝐷𝑖𝑔(𝜋(𝒷′)) ≠ 𝑏, we
have a contradiction with the maximality of 𝑏, and otherwise, we have found a
ball 𝒷 such that 𝐷𝑖𝑔(𝒷) = 𝑏 and |𝜕𝒷 ∩ 𝑆𝑐| ≥ 2. ⊓⊔
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Fig. 1. (a) The projection 𝜋(𝒷) of 𝒷 is defined from the center 𝑐(𝒷) and its closest point
𝑞 in 𝑆𝑐. (b) Projection 𝜋 is continuous on any continuous path: the continuous path in
green is projected on the bolder dark green continuous subpath of the Voronoi diagram.
Grey arrows represent the projection. (c) Illustration of a partial order (in red) on ℬ,
and of the sets 𝐶(ℬ, ⪯ 𝒷) and 𝐶(ℬ,� 𝒷).

Consequently, for any valid maximal digital ball 𝑏, there exists a ball 𝒷 in
𝐷𝑖𝑔−1(𝑏) with 𝑐(𝒷) ∈ 𝜕Vor(𝑆𝑐)∩𝒮. Note that: (i) all the balls 𝒷 with 𝑐(𝒷) in this
set are such that 𝐷𝑖𝑔(𝒷) is valid for 𝑆 ; (ii) some balls 𝒷 with 𝑐(𝒷) in this set
may however be such that 𝐷𝑖𝑔(𝒷) is not maximal. In the following, we denote
Vor⊓(𝑆) = 𝜕Vor(𝑆𝑐) ∩ ⋃ ̊pixel(𝑆) (see Figure 2(a)), and we consider the set of
balls ℬ = {𝒷𝑆(𝑥), 𝑥 ∈ Vor⊓(𝑆)}. This set contains all the balls which digitization
is a valid maximal digital ball for 𝑆.

3.2 Ordering balls of ℬ

By construction, Vor⊓(𝑆) is a collection of segments.

Lemma 5. Vor⊓(𝑆) is a geometric embedding of a tree in ℝ2.

Proof. Suppose that Vor⊓(𝑆) contains a cycle. This cycle is a Jordan curve, and
since it is a subset of 𝜕Vor(𝑆𝑐) it must contain a point of 𝑆𝑐 in its interior.
Moreover, this cycle is included in 𝒮, which is an open polygon containing no
point of 𝑆𝑐 since 𝑆 is 4-connected and 𝑆𝑐 is 8-connected. A contradiction. ⊓⊔

Vor⊓(𝑆) being a tree, it can be endowed with a partial order by picking any
point on it as a root: indeed, it is enough to orient each edge/segment from
the leaves to the root. This results in an oriented tree, denoted by 𝒯, that
defines a partial order ≤𝒯 on the set (of centers) of balls ℬ (see Figure 1(c)). By
construction, (ℬ, ≤𝒯) is an anti-arborescent poset. Moreover, for any 𝑝 ∈ 𝑆, the
set of centers of the balls of 𝐶𝑜𝑣(𝑝,ℬ) = {𝒷 ∈ ℬ, 𝑝 ∈ 𝒷} is a connected subset of
Vor⊓(𝑆).

Lemma 6 (Lemma 4.9 [13]). Let 𝑝 ∈ 𝑆. If 𝑝 ⊆ ̊𝒷1 ∩ ̊𝒷2, then 𝑝 ⊆ ̊𝒷 for all 𝒷
such that 𝑐(𝒷) is on the unique path Γ(𝒷1,𝒷2) between 𝑐(𝒷1) and 𝑐(𝒷2) in Vor⊓(𝑆).

The proof uses projection 𝜋 defined in the previous section, together with
the fact that Vor⊓(𝑆) is the geometric embedding of a tree.



This lemma implies that Property (1) is true for ℬ. It moreover implies that
for all 𝑝, 𝐶𝑜𝑣(𝑝,ℬ) admits a supremum according to the order 𝒯. However, since
the balls of ℬ are open, these sets are open too (see illustration in Figure 2(b)),
except for points 𝑝 that belong to the balls that are either the root or leaves
of 𝒯. A consequence is that, in general, 𝐶𝑜𝑣(𝑝,ℬ) does not admit a greatest
element, and 𝑝 ∉ 𝐷𝑖𝑔(sup𝒯 𝐶𝑜𝑣(𝑝,ℬ)). This results in the following property:

Lemma 7. For any 𝑝 ∈ 𝑆 that does not belong to the root of 𝒯, sup𝒯 𝐶𝑜𝑣(𝑝,ℬ)
either belongs to an open segment of Vor⊓(𝑆) or, if it is a vertex, the balls of
𝐶𝑜𝑣(𝑝,ℬ) are all in the same subtree of predecessors.

Proof. Suppose that sup𝒯 𝐶𝑜𝑣(𝑝,ℬ) is a vertex 𝑣 ∈ Vor⊓(𝑆), and, by contradic-
tion, pick any ball of 𝐶𝑜𝑣(𝑝,ℬ) in a first subtree, and another one in another
subtree. Then the unique path between them goes through 𝑣, and the ball cen-
tered on 𝑣 must contain 𝑝 by Lemma 6 and thus be in 𝐶𝑜𝑣(𝑝,ℬ). It cannot be
the supremum of 𝐶𝑜𝑣(𝑝,ℬ). ⊓⊔
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Fig. 2. (a) Cropped Voronoi diagram Vor⊓(𝑆) for a set of pixels 𝒮 depicted in grey.
(b) 𝐶𝑜𝑣(𝑝,ℬ) is an open set. Part of Vor⊓(𝑆) is depicted in red : the centers of all the
balls of 𝐶𝑜𝑣(𝑝,ℬ) are on the blue segment, delimited by 𝑐(𝒷1) and 𝑐(𝒷2), but 𝒷2 does
not belong to 𝐶𝑜𝑣(𝑝,ℬ) since it contains 𝑝 on its boundary.

The set of ranges ℬ does not fulfill property (2), which is required for Algo-
rithm 1 to be valid. We turn to the set ℬ = {𝑏 ⊆ 𝑆, ∃𝒷 ∈ ℬ 𝐷𝑖𝑔(𝒷) = 𝑏} instead.
Since ℬ is finite, the sets 𝐶𝑜𝑣(𝑝, ℬ) = {𝑏 ∈ ℬ, 𝑝 ∈ 𝑏} are also finite and are
good candidates to admit a greatest element if equipped with a partial order.
We show hereafter how to do this without explicitly computing the set ℬ.

3.3 Ordering digital balls of ℬ

Let the representative of 𝑏 be Rep(𝑏) = sup𝑇{𝒷 ∈ ℬ,𝒷 ∈ 𝐷𝑖𝑔−1(𝑏)}. As seen
before, usually, 𝐷𝑖𝑔(Rep(𝑏)) ≠ 𝑏. From the partial order 𝒯 on ℬ, we define a
partial order 𝑇 on ℬ as follows:



Definition 5. Given two digital balls 𝑏1 and 𝑏2 of ℬ, 𝑏1 ≤𝑇 𝑏2 if:

(1) either 𝑏1 = 𝑏2
(2) or 𝑏1 ≠ 𝑏2 and

(a) either Rep(𝑏1) <𝒯 Rep(𝑏2)
(b) or Rep(𝑏1) = Rep(𝑏2) and 𝐷𝑖𝑔(Rep(𝑏2)) = 𝑏2.

Lemma 8. (ℬ, ≤𝑇) is a poset.

Sketch of proof. Reflexivity follows directly from (1). Antisymmetry is shown
by contradiction considering two cases: either Rep(𝑏1) ≠ Rep(𝑏2) and we get a
contradiction by Definition 5 and definition of 𝒯, or Rep(𝑏1) = Rep(𝑏2) and we
have a contradiction with unicity of 𝐷𝑖𝑔(𝒷) using Definition 5 (2)(b). To show
transitivity, the case 𝑏1 = 𝑏2 or 𝑏2 = 𝑏3 is trivial. Otherwise, we distinguish the
two cases Rep(𝑏1) ≠ Rep(𝑏2) ≠ 𝑅𝑒𝑝(𝑏3) and Rep(𝑏1) = Rep(𝑏2) and Rep(𝑏2) ≠
Rep(𝑏3) and conclude that Rep(𝑏1) <𝒯 Rep(𝑏3) using the fact that 𝒯 is a partial
order. ⊓⊔

In order to prove that the poset (ℬ, ≤𝑇) is anti-arborescent, we need two
extra lemmas that express properties of the sets 𝐷𝑖𝑔−1(𝑏). The following lemma,
together with Lemma 6, moreover ensures that Property (1) is fulfilled for the
set of ranges ℬ.

Lemma 9. (𝑖) For any 𝑏 ∈ ℬ, 𝐷𝑖𝑔−1(𝑏) is connected. (𝑖𝑖) For any 𝑏, 𝑏′ ∈ ℬ, 𝑏 ≠
𝑏′, 𝐷𝑖𝑔−1(𝑏) ∩ 𝐷𝑖𝑔−1(𝑏′) = ∅. As a consequence, we have (𝑖𝑖𝑖): let 𝒷 ∈ 𝐷𝑖𝑔−1(𝑏)
and 𝒷′ ∈ 𝐷𝑖𝑔−1(𝑏′) with 𝑏 ≠ 𝑏′: if 𝒷 <𝒯 𝒷′, then 𝒷 ≤𝒯 Rep(𝑏) ≤𝒯 𝒷′ ≤𝒯 Rep(𝑏′).

Proof. (𝑖) follows from Lemma 6 since 𝐷𝑖𝑔−1(𝑏) = ⋂𝑝∈𝑏 𝐶𝑜𝑣(𝑝,ℬ). (𝑖𝑖) is straight-
forward by unicity of the digitization. To prove (𝑖𝑖𝑖), note that Rep(𝑏) and 𝒷′ are
comparable since they are both successors of 𝒷 and 𝒯 is an anti-arborescence.
Suppose by contradiction that 𝒷′ ⪇𝒯 Rep(𝑏). Then 𝒷′ is on the unique path
between 𝒷 and Rep(𝑏), a contradiction with (𝑖) and (𝑖𝑖). ⊓⊔

Lemma 10. Let 𝑏1, 𝑏2 ∈ ℬ, 𝑏1 ≠ 𝑏2, and 𝒷 = Rep(𝑏1) = Rep(𝑏2) such that
𝒷 ∉ 𝐷𝑖𝑔−1(𝑏1) and 𝒷 ∉ 𝐷𝑖𝑔−1(𝑏2). Then for all 𝒷1 ∈ 𝐷𝑖𝑔−1(𝑏1) and all 𝒷2 ∈
𝐷𝑖𝑔−1(𝑏2), 𝒷1 ans 𝒷2 are incomparable.

Proof. Suppose by contradiction that 𝒷1 <𝒯 𝒷2. Thus 𝒷1 ⪇𝒯 Rep(𝑏1). Since
𝐷𝑖𝑔−1(𝑏2) cannot be empty, Rep(𝑏2) ∉ 𝐷𝑖𝑔−1(𝑏2) implies that there exists 𝒷2 ≠
Rep(𝑏2) such that 𝒷2 ∈ 𝐷𝑖𝑔−1(𝑏2). Using Lemma 9, we get 𝒷1 ⪇𝒯 Rep(𝑏1) ≤𝒯
𝒷2 ⪇𝒯 Rep(𝑏2), which is a contradiction with Rep(𝑏1) = Rep(𝑏2). ⊓⊔

Theorem 2. The poset (ℬ, ≤𝑇) is anti-arborescent.

Sketch of proof. We first prove by contradiction that the successors of any 𝑏 ∈ ℬ
are comparable, by considering three cases: Rep(𝑏) = Rep(𝑏1) = Rep(𝑏2), or
Rep(𝑏) = Rep(𝑏1) and Rep(𝑏) <𝒯 Rep(𝑏2), or Rep(𝑏) <𝒯 Rep(𝑏1) and Rep(𝑏) <𝒯
Rep(𝑏2). In the first two cases, we have a direct contradiction with Definition 5.
The third case is a little bit trickier and uses Lemma 10.



Next, we prove by contradiction that the predecessors of two incomparable
balls 𝑏1 and 𝑏2 are also incomparable. Two cases are studied: if 𝑏′

1 = 𝑏′
2, then

Rep(𝑏′
1) = Rep(𝑏′

2) and we use Lemma 9(𝑖𝑖𝑖) and the fact that (ℬ, 𝒯) is an anti-
arborescence to get a contradiction; if 𝑏′

1 ≤𝑇 𝑏′
2 and Rep(𝑏′

1) ⪇𝒯 Rep(𝑏′
2), we use

again Lemma 9(𝑖𝑖𝑖) to get a contradiction. ⊓⊔
It remains to prove that 𝐶𝑜𝑣(𝑝, ℬ) admits a greatest element for all 𝑝 ∈ 𝑆.

To do so, we remark that the ball sup𝒯 𝐶𝑜𝑣(𝑝,ℬ) of a point 𝑝 ∈ 𝑆 can be written
as the maximum representative ball of 𝐶𝑜𝑣(𝑝, ℬ).

sup𝒯𝐶𝑜𝑣(𝑝,ℬ) = sup𝒯{𝒷 ∈ ℬ, 𝑝 ∈ 𝒷}
= sup𝒯{𝒷 ∈ ℬ, 𝑝 ∈ 𝐷𝑖𝑔(𝒷)}
= sup𝒯

𝑏∈𝐶𝑜𝑣(𝑝,ℬ)
{𝒷 ∈ ℬ, 𝐷𝑖𝑔(𝒷) = 𝑏}

= sup𝒯
𝑏∈𝐶𝑜𝑣(𝑝,ℬ)

Rep(𝑏) = max𝒯
𝑏∈𝐶𝑜𝑣(𝑝,ℬ)

Rep(𝑏)

(1)

The digital ball 𝑏𝑚𝑎𝑥(𝑝) ∈ ℬ that achieves the maximum in Equation (1)
is actually the critical ball Crit(𝑝, ℬ). In the last subsection, we show how to
compute it.

Lemma 11. Let 𝑝 ∈ 𝑆, and 𝑏𝑚𝑎𝑥(𝑝) ∈ 𝐶𝑜𝑣(𝑝, ℬ) be such that Rep(𝑏𝑚𝑎𝑥(𝑝)) =
sup𝒯 𝐶𝑜𝑣(𝑝,ℬ). Then for any 𝑏 ∈ 𝐶𝑜𝑣(𝑝, ℬ), 𝑏 ≤𝑇 𝑏𝑚𝑎𝑥(𝑝).

Proof. Let 𝑏 ∈ 𝐶𝑜𝑣(𝑝, ℬ). If Rep(𝑏) <𝒯 Rep(𝑏𝑚𝑎𝑥(𝑝)), by Definition 5, 𝑏 <𝑇
𝑏𝑚𝑎𝑥(𝑝). The case Rep(𝑏) >𝒯 Rep(𝑏𝑚𝑎𝑥(𝑝)) is not possible by definition of
𝑏𝑚𝑎𝑥(𝑝). The case Rep(𝑏) = Rep(𝑏𝑚𝑎𝑥(𝑝)) remains. Since 𝐷𝑖𝑔−1(𝑏) are connected
and disjoint (Lemma 9), the only way for two balls 𝑏1 and 𝑏2 to have the same
representative is when it is a vertex of the anti-arborescence. Then 𝐷𝑖𝑔−1(𝑏1)
and 𝐷𝑖𝑔−1(𝑏2) belong to two different subtrees of this vertex, a contradiction
with Lemma 7. ⊓⊔

3.4 Computing critical balls

The first step is to find the edge of Vor⊓(𝑆) Rep(Crit(𝑝, ℬ)) belongs to. It is
convenient to note that each edge of Vor⊓(𝑆) corresponds to balls of ℬ that go
through a pair of points of 𝑆𝑐. This edge can then be described as a parabolic
pencil of circles [5, 15] defined by two points of 𝑆𝑐 and delimited by its two
extremities. Each ball 𝒷𝜆 of the pencil can be expressed as a convex combination
of the two extremities, according to the following relation: ∀𝑝, pow(𝑝,𝒷𝜆) =
(1 − 𝜆)pow(𝑝,𝒷1) + 𝜆pow(𝑝,𝒷2), where pow denotes the power of a point with
respect to a ball 𝒷(𝑐, 𝑟) and is equal to pow(𝑝,𝒷) = 𝑑(𝑐, 𝑝) − 𝑟2.

Given a topological order on the edges of Vor⊓(𝑆), consider the edges [𝒷1,𝒷2]
in increasing order. If 𝑝 belongs to 𝐷𝑖𝑔(𝒷1) but not to 𝐷𝑖𝑔(𝒷2), then Rep(Crit(𝑝, ℬ))
belongs to the edge [𝒷1,𝒷2[. Using the fact that 𝑝 ∈ 𝜕Rep(Crit(𝑝, ℬ)), and the re-
lation above, we can compute the value 𝜆 such that 𝒷𝜆 = Rep(Crit(𝑝, ℬ)) on the
pencil [𝒷1,𝒷2[, as 𝜆 = pow(𝑝,𝒷1)

pow(𝑝,𝒷1)−pow(𝑝,𝒷2)
. For all 0 ≤ 𝜆′ < 𝜆, 𝐷𝑖𝑔(𝒷𝜆′) contains 𝑝



(see Figure 3(a)). We look for a value 𝜆c𝑟𝑖𝑡 < 𝜆 such that 𝐷𝑖𝑔(𝒷𝜆) ⊂ 𝐷𝑖𝑔(𝒷𝜆c𝑟𝑖𝑡).
Such a value exist thanks to Lemma 7. For all the points 𝑞 ∈ 𝐷𝑖𝑔(𝒷𝜆)\𝐷𝑖𝑔(𝒷1), let
𝒷𝜆𝑞 be the ball of [𝒷1,𝒷2[ such that 𝑞 ∈ 𝜕𝒷𝜆𝑞. For all values 𝜇 > 𝜆𝑞, 𝑞 ∈ 𝐷𝑖𝑔(𝒷𝜇).
By setting 𝜇 = max𝑞{𝜆𝑞}, we have that ∀𝜇′ > 𝜇, 𝐷𝑖𝑔(𝒷𝜆) ⊂ 𝐷𝑖𝑔(𝒷′

𝜇).
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Fig. 3. (a) Computation of Crit(𝑝, ℬ): 𝒷𝜆 = Rep(Crit(𝑝, ℬ)); any ball between 𝒷𝜇 and
𝒷𝜆 (see for instance the ball in gray) contains 𝑝 and all the points of 𝐷𝑖𝑔(𝒷𝜆) (circled).
(b) Illustration of the fact that the critical ball is not always maximal.

By setting 𝜆c𝑟𝑖𝑡 to any value strictly between 𝜇 and 𝜆, we have 𝐷𝑖𝑔(𝒷𝜆c𝑟𝑖𝑡) ⊃
{𝑝} ∪ 𝐷𝑖𝑔(𝒷𝜆) as desired. Note that, as mentioned before, 𝐷𝑖𝑔(𝒷𝜆c𝑟𝑖𝑡) may not
be maximal. Indeed, as illustrated in Figure 3(b), by definition of 𝒷𝜇 there is
no point of 𝑆 in the grey region. However, 𝐷𝑖𝑔(𝒷𝜇) may contain points of 𝑆
other than 𝑝, for instance point 𝑞 in the figure. Thus, if we consider the two
balls 𝒷 and 𝒷′ both between 𝒷𝜇 and 𝒷𝜆, 𝐷𝑖𝑔(𝒷′) ⊂ 𝐷𝑖𝑔(𝒷), so that 𝐷𝑖𝑔(𝒷′) is not
maximal. As proven in the section before, this is not a problem: in the course
of the algorithm, either 𝑞 belongs to the subset not covered yet, and then the
critical ball of 𝑞, which is equal to 𝐷𝑖𝑔(𝒷), is chosen, or 𝑞 is already covered, and
picking 𝐷𝑖𝑔(𝒷′) instead of 𝐷𝑖𝑔(𝒷) does not change anything.

4 Results

Algorithm 1 was implemented1 using three open-source libraries: DGtal [2] to
handle digital sets, CGAL [1] to compute Vor⊓(𝑆), and Boost Graph [3] to com-
pute topological order on trees. A kernel with exact predicates and constructions
was used to avoid rounding errors. As a conclusion, some results are presented
in Figure 4.
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