Exact and optimal conversion of a hole-free 2D digital object into a set of balls

Isabelle Sivignon

International Conference on Discrete Geometry and Mathematical Morphology, Oct. 24-27, 2022, Strasbourg

Motivation

Conversion from one geometric model to another

Motivation

Conversion from one geometric model to another

Set of pixels \Longrightarrow set of balls

Digital object $=$ finite subset of \mathbb{Z}^{2}
Optimization problem
Given a 2D digital object S, compute a finite set of balls that:

- covers all the points of S and no point of $\mathbb{Z}^{2} \backslash S$
is of minimum cardinality.

Set of pixels \Longrightarrow set of balls

Digital object $=$ finite subset of \mathbb{Z}^{2}
Optimization problem
Given a 2D digital object S, compute a finite set of balls that:

- covers all the points of S and no point of $\mathbb{Z}^{2} \backslash S$
- is of minimum cardinality.

Distance tranformation

not minimum

Summarized state of the art

Related problems

- NP-hard when the balls must be centered on \mathbb{Z}^{2} [Coeurjolly, Hulin, S. 2008][Ragnemalm, Borgefors 93]

Summarized state of the art

Related problems

NP-hard when the balls must be centered on \mathbb{Z}^{2} [Coeurjolly, Hulin, S. 2008][Ragnemalm, Borgefors 93]

- Close to the set cover problem (also NP-hard): given a pair (X, \mathcal{R}), where X is a set of points and \mathcal{R} is a family of subsets of X called ranges, find a minimum subset of \mathcal{R} that covers all the points of X [Cormen, Leiserson, Rivest, 90]

Summarized state of the art

Related problems

- NP-hard when the balls must be centered on \mathbb{Z}^{2} [Coeurjolly, Hulin, S. 2008][Ragnemalm, Borgefors 93]
- Close to the set cover problem (also NP-hard): given a pair (X, \mathcal{R}), where X is a set of points and \mathcal{R} is a family of subsets of X called ranges, find a minimum subset of \mathcal{R} that covers all the points of X [Cormen, Leiserson, Rivest, 90]
- inner/outer approximation of union of balls [Cazals et al. 2013]

Summarized state of the art

Related problems

NP-hard when the balls must be centered on \mathbb{Z}^{2} [Coeurjolly, Hulin, S. 2008][Ragnemalm, Borgefors 93]

- Close to the set cover problem (also NP-hard): given a pair (X, \mathcal{R}), where X is a set of points and \mathcal{R} is a family of subsets of X called ranges, find a minimum subset of \mathcal{R} that covers all the points of X [Cormen, Leiserson, Rivest, 90]
- inner/outer approximation of union of balls [Cazals et al. 2013]
> (δ, ϵ)-ball approximation [Nguyen 2018]: NP-hard in the general case, but polynomial time algorithm if shape has no hole

Interval cover

Specifications

Set of points $X \subset \mathbb{R}$
Set of ranges $\mathcal{R}=$ intervals
Assume that all intervals are maximal

Interval cover

Specifications

```
Set of points X\subset\mathbb{R}
Set of ranges }\mathcal{R}=\mathrm{ intervals
Assume that all intervals are maximal
```

Greedy optimal algorithm
Pick a direction. Iteratively pick the interval that goes further in that direction and that does not miss points of X.

Interval cover

Specifications

Set of points $X \subset \mathbb{R}$
Set of ranges $\mathcal{R}=$ intervals
Assume that all intervals are maximal
Greedy optimal algorithm
Pick a direction. Iteratively pick the interval that goes further in that direction and that does not miss points of X.

Interval cover - generalized algorithm

A

- Partial order on the intervals:
$A \rightarrow D: A$ ends before D

Interval cover - generalized algorithm

- Partial order on the intervals:
$A \rightarrow D: A$ ends before D
Topological sort of the intervals

Interval cover - generalized algorithm

- Partial order on the intervals: $A \rightarrow D: A$ ends before D
- Topological sort of the intervals

Greedy Algorithm

```
Cov}\leftarrow\emptyset
U
for i\in\mathcal{J, in topological order do}
        if i is a maximal candidate for }U\mathrm{ then
                Cov}\leftarrow\operatorname{Cov}\cup{i}
        U\leftarrowU\i;
return Cov
```

"i maximal candidate for U ": i covers a point of U that is not covered by any interval "after" i

General set cover setting

Input/Output

Input: (X, \mathcal{R}) where X is a set of points, \mathcal{R} a family of ranges ($=$ subsets of $X)$ and $\bigcup \mathcal{R}=X$
Output: a subset $C o v$ of \mathcal{R} such that $C o v$ is a covering of X

```
Greedy Algorithm
Cov}\leftarrow\emptyset
U}\leftarrowX (set of uncovered points)
for r}\in\mathcal{R}\mathrm{ , in topological order do
    if }r\mathrm{ is a maximal candidate for }U\mathrm{ then
        Cov}\leftarrow\operatorname{Cov}\cup{r}
        U\leftarrowU\r;
return Cov
```

\Longrightarrow which conditions for $C o v$ to be a cardinal minimum covering ?

Optimal greedy algorithm ?

Sufficient conditions

If:

1. there exists a partial order \preceq on \mathcal{R} such that (\mathcal{R}, \preceq) is anti-arborescent
2. $\forall x \in X$, the set $\{r \in \mathcal{R}, x \in r\}$ admits a maximum according to \preceq
3. $\forall r_{1}, r_{2} \in \mathcal{R}, \forall r, r_{1} \prec r \prec r_{2}, r_{1} \cap r_{2} \subseteq r$
then the greedy algorithm outputs a cardinal minimum covering of X.

Optimal greedy algorithm ?

Sufficient conditions

If:

1. there exists a partial order \preceq on \mathcal{R} such that (\mathcal{R}, \preceq) is anti-arborescent
2. $\forall x \in X$, the set $\{r \in \mathcal{R}, x \in r\}$ admits a maximum according to \preceq
3. $\forall r_{1}, r_{2} \in \mathcal{R}, \forall r, r_{1} \prec r \prec r_{2}, r_{1} \cap r_{2} \subseteq r$
then the greedy algorithm outputs a cardinal minimum covering of X.

Optimal greedy algorithm ?

Sufficient conditions

If:

1. there exists a partial order \preceq on \mathcal{R} such that (\mathcal{R}, \preceq) is anti-arborescent
2. $\forall x \in X$, the set $\{r \in \mathcal{R}, x \in r\}$ admits a maximum according to \preceq
3. $\forall r_{1}, r_{2} \in \mathcal{R}, \forall r, r_{1} \prec r \prec r_{2}, r_{1} \cap r_{2} \subseteq r$
then the greedy algorithm outputs a cardinal minimum covering of X.

Optimal greedy algorithm ?

Sufficient conditions

If:

1. there exists a partial order \preceq on \mathcal{R} such that (\mathcal{R}, \preceq) is anti-arborescent
2. $\forall x \in X$, the set $\{r \in \mathcal{R}, x \in r\}$ admits a maximum according to \preceq
3. $\forall r_{1}, r_{2} \in \mathcal{R}, \forall r, r_{1} \prec r \prec r_{2}, r_{1} \cap r_{2} \subseteq r$
then the greedy algorithm outputs a cardinal minimum covering of X.

Back to the original problem

Problem

Given a 2D digital object S, compute a finite set of balls that:

- covers all the points of S and no point of $\mathbb{Z}^{2} \backslash S$
- is of minimum cardinality.

Back to the original problem

Problem

Given a 2D digital object S, compute a finite set of balls that:

- covers all the points of S and no point of $\mathbb{Z}^{2} \backslash S$
- is of minimum cardinality.

Link with set cover problem: $X=S$; set of ranges \mathcal{R} is unknown but should "grab" the set of all digital balls included in S

Back to the original problem

Problem

Given a 2D digital object S, compute a finite set of balls that:

- covers all the points of S and no point of $\mathbb{Z}^{2} \backslash S$
- is of minimum cardinality.

Link with set cover problem: $X=S$; set of ranges \mathcal{R} is unknown but should "grab" the set of all digital balls included in S

- Digital ball $b=$ subset of \mathbb{Z}^{2} for which there exists a ball b such that $\operatorname{Dig}(a)=\dot{a} \cap \mathbb{Z}^{2}=b$

Grabbing maximal digital balls

Property
For any maximal digital ball b included in S, there exists a ball b such that $\operatorname{Dig}(a)=b$ and a has at least two points of $\mathbb{Z}^{2} \backslash S$ on its boundary.
\Longrightarrow compute the cropped Voronoi diagram of $\mathbb{Z}^{2} \backslash S=\operatorname{Vor} \sqcap(S)$

Grabbing maximal digital balls

Property
For any maximal digital ball b included in S, there exists a ball b such that $\operatorname{Dig}(b)=b$ and b has at least two points of $\mathbb{Z}^{2} \backslash S$ on its boundary.
\Longrightarrow compute the cropped Voronoi diagram of $\mathbb{Z}^{2} \backslash S=\operatorname{Vor}^{\sqcap}(S)$

Set of open balls \mathscr{B}
$\mathscr{B}=\{$ b s.t. $\operatorname{Dig}(b)$ is a maximal digital ball in $S\}$ $\operatorname{Vor}(S)$ is the set of centers of balls of \mathscr{B}

Grabbing maximal digital balls

Property
For any maximal digital ball b included in S, there exists a ball b such that $\operatorname{Dig}(a)=b$ and a has at least two points of $\mathbb{Z}^{2} \backslash S$ on its boundary.
\Longrightarrow compute the cropped Voronoi diagram of $\mathbb{Z}^{2} \backslash S=\operatorname{Vor}^{\sqcap}(S)$

Set of open balls \mathscr{B}
$\mathscr{B}=\{b$ s.t. $\operatorname{Dig}(b)$ is a maximal digital ball in $S\}$ $\operatorname{Vor}(S)$ is the set of centers of balls of \mathscr{B}

If S has no hole, then $\operatorname{Vor}^{\square}(S)$ is a tree \mathcal{T}.
$>$ partial order $\leq_{\mathcal{T}}$ on \mathscr{B} by picking a sink

Is \mathscr{B} a good set of ranges?

Sufficient conditions

If:

1. there exists a partial order $\leq_{\mathcal{T}}$ such that $\left(\mathscr{B}, \leq_{\mathcal{T}}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{a \in \mathscr{B}, x \in a\}$ admits a maximum according to
then the greedy algorithm outputs a cardinal minimum covering of S.

Is \mathscr{B} a good set of ranges ?

Sufficient conditions

If:

1. there exists a partial order $\leq_{\mathcal{T}}$ such that $\left(\mathscr{B}, \leq_{\mathcal{T}}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathscr{B}, x \in b\}$ admits a maximum according to $\leq_{\mathcal{T}}$ then the greedy algorithm outputs a cardinal minimum covering of S.

Is \mathscr{B} a good set of ranges ?

Sufficient conditions

If:

1. there exists a partial order $\leq_{\mathcal{T}}$ such that $\left(\mathscr{B}, \leq_{\mathcal{T}}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathscr{B}, x \in b\}$ admits a maximum according to $\leq_{\mathcal{T}}$

then the greedy algorithm outputs a cardinal minimum covering of S.

Balls of \mathscr{B} are open \Rightarrow the sets $\{a \in \mathscr{B}, x \in a\}$ admit a supremum but generally not a maximum

Is \mathscr{B} a good set of ranges ?

Sufficient conditions

If:

1. there exists a partial order $\leq_{\mathcal{T}}$ such that $\left(\mathscr{B}, \leq_{\mathcal{T}}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathscr{B}, x \in b\}$ admits a maximum according to $\leq_{\mathcal{T}}$

then the greedy algorithm outputs a cardinal minimum covering of S.

Balls of \mathscr{B} are open \Rightarrow the sets $\{a \in \mathscr{B}, x \in a\}$ admit a supremum but generally not a maximum

Is \mathscr{B} a good set of ranges ?

Sufficient conditions

If:

1. there exists a partial order $\leq_{\mathcal{T}}$ such that $\left(\mathscr{B}, \leq_{\mathcal{T}}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathscr{B}, x \in b\}$ admits a maximum according to $\leq_{\mathcal{T}}$

then the greedy algorithm outputs a cardinal minimum covering of S.

Balls of \mathscr{B} are open \Rightarrow the sets $\{a \in \mathscr{B}, x \in a\}$ admit a supremum but generally not a maximum

Is \mathscr{B} a good set of ranges ?

Sufficient conditions

If:

1. there exists a partial order $\leq_{\mathcal{T}}$ such that $\left(\mathscr{B}, \leq_{\mathcal{T}}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathscr{B}, x \in \mathfrak{G}\}$ admits a maximum according to $\leq_{\mathcal{T}} \boldsymbol{X}$

then the greedy algorithm outputs a cardinal minimum covering of S.

Balls of \mathscr{B} are open \Rightarrow the sets $\{a \in \mathscr{B}, x \in a\}$ admit a supremum but generally not a maximum

Another set of ranges

Set \mathcal{B} of maximal digital balls

$$
\mathcal{B}=\{b \subseteq S \text { s.t. } \exists \mathfrak{G}, \operatorname{Dig}(\mathfrak{b})=b\}
$$

Another set of ranges

Set \mathcal{B} of maximal digital balls

$$
\mathcal{B}=\{b \subseteq S \text { s.t. } \exists \mathfrak{G}, \operatorname{Dig}(\vec{a})=b\}
$$

Partial order \mathcal{T} on $\mathscr{B} \Rightarrow$ Partial order T on \mathcal{B}
$\operatorname{Rep}(b)=\sup _{\mathcal{T}}\{b \in \mathscr{B}, \operatorname{Dig}(b)=b\}$.
(We can have $\operatorname{Dig}(\operatorname{Rep}(b)) \neq b$.)

Definition: $b_{1} \leq_{T} b_{2}$ if:
(1) either $b_{1}=b_{2}$
(2) or $b_{1} \neq b_{2}$ and
(a) either $\operatorname{Rep}\left(b_{1}\right)<\mathcal{T} \operatorname{Rep}\left(b_{2}\right)$
(b) or $\operatorname{Rep}\left(b_{1}\right)=\operatorname{Rep}\left(b_{2}\right)$ and $\operatorname{Dig}\left(\operatorname{Rep}\left(b_{2}\right)\right)=b_{2}$.

Another set of ranges

Set \mathcal{B} of maximal digital balls

$$
\mathcal{B}=\{b \subseteq S \text { s.t. } \exists G, \operatorname{Dig}(b)=b\}
$$

Partial order \mathcal{T} on $\mathscr{B} \Rightarrow$ Partial order T on \mathcal{B}
$\operatorname{Rep}(b)=\sup _{\mathcal{J}}\{b \in \mathscr{B}, \operatorname{Dig}(b)=b\}$.
(We can have $\operatorname{Dig}(\operatorname{Rep}(b)) \neq b$.)
Definition: $b_{1} \leq_{T} b_{2}$ if:
(1) either $b_{1}=b_{2}$
(2) or $b_{1} \neq b_{2}$ and
(a) either $\operatorname{Rep}\left(b_{1}\right)<\mathcal{T} \operatorname{Rep}\left(b_{2}\right)$
(b) or $\operatorname{Rep}\left(b_{1}\right)=\operatorname{Rep}\left(b_{2}\right)$ and $\operatorname{Dig}\left(\operatorname{Rep}\left(b_{2}\right)\right)=b_{2}$.

Another set of ranges

Set \mathcal{B} of maximal digital balls

$$
\mathcal{B}=\{b \subseteq S \text { s.t. } \exists \mathfrak{G}, \operatorname{Dig}(\vec{a})=b\}
$$

Partial order \mathcal{T} on $\mathscr{B} \Rightarrow$ Partial order T on \mathcal{B}
$\operatorname{Rep}(b)=\sup _{\mathcal{T}}\{b \in \mathscr{B}, \operatorname{Dig}(b)=b\}$.
(We can have $\operatorname{Dig}(\operatorname{Rep}(b)) \neq b$.)

Definition: $b_{1} \leq_{T} b_{2}$ if:
(1) either $b_{1}=b_{2}$
(2) or $b_{1} \neq b_{2}$ and
(a) either $\operatorname{Rep}\left(b_{1}\right)<\mathcal{T} \operatorname{Rep}\left(b_{2}\right)$
(b) or $\operatorname{Rep}\left(b_{1}\right)=\operatorname{Rep}\left(b_{2}\right)$ and $\operatorname{Dig}\left(\operatorname{Rep}\left(b_{2}\right)\right)=b_{2}$.

Another set of ranges

Set \mathcal{B} of maximal digital balls

$$
\mathcal{B}=\{b \subseteq S \text { s.t. } \exists G, \operatorname{Dig}(b)=b\}
$$

Partial order \mathcal{T} on $\mathscr{B} \Rightarrow$ Partial order T on \mathcal{B}

$\operatorname{Rep}(b)=\sup _{\mathcal{T}}\{b \in \mathscr{B}, \operatorname{Dig}(b)=b\}$.
(We can have $\operatorname{Dig}(\operatorname{Rep}(b)) \neq b$.)

Definition: $b_{1} \leq_{T} b_{2}$ if:
(1) either $b_{1}=b_{2}$
(2) or $b_{1} \neq b_{2}$ and
(a) either $\operatorname{Rep}\left(b_{1}\right)<\mathcal{T} \operatorname{Rep}\left(b_{2}\right)$
(b) or $\operatorname{Rep}\left(b_{1}\right)=\operatorname{Rep}\left(b_{2}\right)$ and $\operatorname{Dig}\left(\operatorname{Rep}\left(b_{2}\right)\right)=b_{2}$.

Property

$\left(\mathcal{B}, \leq_{T}\right)$ is a poset and is anti-arborescent

Is \mathcal{B} a good set of ranges?

Sufficient conditions

If:

1. there exists a partial order \leq_{T} such that $\left(\mathcal{B}, \leq_{T}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_{T}
3. $\forall b_{1}, b_{2} \in \mathcal{B}, \forall b, b_{1}<_{T} b<_{T} b_{2}, b_{1} \cap b_{2} \subseteq b$: true for \mathscr{B} [Lieutier 04] +
technical properties of the sets $\{a$, Dig($a)=b\} \checkmark$
then the greedy algorithm outputs a cardinal minimum covering of S.

Is \mathcal{B} a good set of ranges ?

Sufficient conditions

If:

1. there exists a partial order \leq_{T} such that $\left(\mathcal{B}, \leq_{T}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_{T}
technical properties of the sets $\{a, \operatorname{Dig}(a)=b\} \checkmark$
then the greedy algorithm outputs a cardinal minimum covering of S.

Is \mathcal{B} a good set of ranges?

Sufficient conditions

If:

1. there exists a partial order \leq_{T} such that $\left(\mathcal{B}, \leq_{T}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_{T}
technical properties of the sets
then the oreedy aloorithm mutnuts a rardinal minimum covering of S

Among all the digital balls that contain x, take the ball b such that $\operatorname{Rep}(b)$ is maximum.

Is \mathcal{B} a good set of ranges?

Sufficient conditions

If:

1. there exists a partial order \leq_{T} such that $\left(\mathcal{B}, \leq_{T}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_{T}
technical properties of the sets $\{$
then the oreedy aloorithm outnuts a ca dinal minimum covering of S.

Among all the digital balls that contain x, take the ball b such that $\operatorname{Rep}(b)$ is maximum.

Is \mathcal{B} a good set of ranges?

Sufficient conditions

If:

1. there exists a partial order \leq_{T} such that $\left(\mathcal{B}, \leq_{T}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_{T}
technical properties of the sets $\{$
then the oreedy aloorithm outnuts a ca dinal minimum covering of S.

Among all the digital balls that contain x, take the ball b such that $\operatorname{Rep}(b)$ is maximum.

Is \mathcal{B} a good set of ranges?

Sufficient conditions

If:

1. there exists a partial order \leq_{T} such that $\left(\mathcal{B}, \leq_{T}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_{T}
technical properties of the sets $\{$
then the oreedy aloorithm outnuts a ca dinal minimum covering of S.

Among all the digital balls that contain x, take the ball b such that $\operatorname{Rep}(b)$ is maximum.

Is \mathcal{B} a good set of ranges?

Sufficient conditions

If:

1. there exists a partial order \leq_{T} such that $\left(\mathcal{B}, \leq_{T}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_{T}
technical properties of the sets $\{$
then the oreedy aloorithm outnuts a ca dinal minimum covering of S.

Among all the digital balls that contain x, take the ball b such that $\operatorname{Rep}(b)$ is maximum.

Is \mathcal{B} a good set of ranges?

Sufficient conditions

If:

1. there exists a partial order \leq_{T} such that $\left(\mathcal{B}, \leq_{T}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_{T}
technical properties of the sets $\{$
then the oreedy aloorithm outnuts a ca dinal minimum covering of S.

Among all the digital balls that contain x, take the ball b such that $\operatorname{Rep}(b)$ is maximum.

Is \mathcal{B} a good set of ranges?

Sufficient conditions

If:

1. there exists a partial order \leq_{T} such that $\left(\mathcal{B}, \leq_{T}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_{T}
technical properties of the sets $\{$
then the oreedy aloorithm outnuts a ca dinal minimum covering of S.

Among all the digital balls that contain x, take the ball b such that $\operatorname{Rep}(b)$ is maximum.

Is \mathcal{B} a good set of ranges?

Sufficient conditions

If:

1. there exists a partial order \leq_{T} such that $\left(\mathcal{B}, \leq_{T}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_{T}
technical properties of the sets $\{$
then the oreedy aloorithm outnuts a ca dinal minimum covering of S

Among all the digital balls that contain x, take the ball b such that $\operatorname{Rep}(b)$ is maximum.

Is \mathcal{B} a good set of ranges?

Sufficient conditions

If:

1. there exists a partial order \leq_{T} such that $\left(\mathcal{B}, \leq_{T}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_{T}
technical properties of the sets $\{$
then the oreedy aloorithm outnuts a ca dinal minimum covering of S.

Among all the digital balls that contain x, take the ball b such that $\operatorname{Rep}(b)$ is maximum.

Is \mathcal{B} a good set of ranges?

Sufficient conditions

If:

1. there exists a partial order \leq_{T} such that $\left(\mathcal{B}, \leq_{T}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_{T},
technical properties of the sets $\{a, D i g(6)=b\}$
the greedy algorithm outputs a cardinal minimum covering of S

Among all the digital balls that contain x, take the ball b such that $\operatorname{Rep}(b)$ is maximum.

Is \mathcal{B} a good set of ranges?

Sufficient conditions

If:

1. there exists a partial order \leq_{T} such that $\left(\mathcal{B}, \leq_{T}\right)$ is anti-arborescent \checkmark
2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_{T}
3. $\forall b_{1}, b_{2} \in \mathcal{B}, \forall b, b_{1}<_{T} b<_{T} b_{2}, b_{1} \cap b_{2} \subseteq b$: true for \mathscr{B} [Lieutier 04] + technical properties of the sets $\{a, \operatorname{Dig}(a)=b\}$
then the greedy algorithm outputs a cardinal minimum covering of S.

Among all the digital balls that contain x, take the ball b such that $\operatorname{Rep}(b)$ is maximum.

Some results

Implementation using DGtal (digital sets), CGAL (Voronoi diagram, disks) and Boost Graphs (topological order).

Thank you !

