Exact and optimal conversion of a hole-free 2D digital object into a set of balls

Isabelle Sivignon

International Conference on Discrete Geometry and Mathematical Morphology, Oct. 24-27, 2022, Strasbourg

Motivation

Conversion from one geometric model to another

Motivation

Conversion from one geometric model to another

[Mede et al. 2018]

Set of pixels \Longrightarrow set of balls

```
Digital object = finite subset of \mathbb{Z}^2
```

Optimization problem

Given a 2D digital object S, compute a finite set of balls that:

• covers all the points of S and no point of $\mathbb{Z}^2 \setminus S$

is of minimum cardinality.

Set of pixels \Longrightarrow set of balls

Digital object = finite subset of \mathbb{Z}^2

Optimization problem

Given a 2D digital object S, compute a finite set of balls that:

- covers all the points of S and no point of $\mathbb{Z}^2 \setminus S$
- **b** is of **minimum cardinality**.

not minimum

Related problems

NP-hard when the balls must be centered on \mathbb{Z}^2 [Coeurjolly, Hulin, S. 2008][Ragnemalm, Borgefors 93]

Related problems

- ▶ NP-hard when the balls must be centered on Z² [Coeurjolly, Hulin, S. 2008][Ragnemalm, Borgefors 93]
- Close to the set cover problem (also NP-hard): given a pair (X, R), where X is a set of points and R is a family of subsets of X called *ranges*, find a minimum subset of R that covers all the points of X [Cormen, Leiserson, Rivest, 90]

Related problems

- ▶ NP-hard when the balls must be centered on Z² [Coeurjolly, Hulin, S. 2008][Ragnemalm, Borgefors 93]
- Close to the set cover problem (also NP-hard): given a pair (X, R), where X is a set of points and R is a family of subsets of X called *ranges*, find a minimum subset of R that covers all the points of X [Cormen, Leiserson, Rivest, 90]
- inner/outer approximation of union of balls [Cazals et al. 2013]

Related problems

- ▶ NP-hard when the balls must be centered on Z² [Coeurjolly, Hulin, S. 2008][Ragnemalm, Borgefors 93]
- Close to the set cover problem (also NP-hard): given a pair (X, R), where X is a set of points and R is a family of subsets of X called *ranges*, find a minimum subset of R that covers all the points of X [Cormen, Leiserson, Rivest, 90]
- inner/outer approximation of union of balls [Cazals et al. 2013]
- (δ, ϵ) -ball approximation [Nguyen 2018]: NP-hard in the general case, but polynomial time algorithm if shape has no hole

Interval cover

Specifications

Set of points $X\subset \mathbb{R}$ Set of ranges $\mathcal{R}=$ intervals Assume that all intervals are maximal

Interval cover

Specifications

Set of points $X \subset \mathbb{R}$ Set of ranges \mathcal{R} = intervals Assume that all intervals are maximal

Greedy optimal algorithm

Pick a direction. Iteratively pick the interval that goes further in that direction and that does not miss points of X.

Interval cover

Specifications

Set of points $X \subset \mathbb{R}$ Set of ranges \mathcal{R} = intervals Assume that all intervals are maximal

Greedy optimal algorithm

Pick a direction. Iteratively pick the interval that goes further in that direction and that does not miss points of X.

Partial order on the intervals: $A \rightarrow D$: A ends before D

Partial order on the intervals: $A \rightarrow D$: A ends before D

Topological sort of the intervals

A EGGreedy Algorithm $Cov \leftarrow \emptyset$: $U \leftarrow X$ (set of uncovered points); for $i \in \mathcal{I}$, in topological order do 5 if *i* is a maximal candidate for *U* then $Cov \leftarrow Cov \cup \{i\};$ $U \leftarrow U \setminus i;$ (2) return Cov

Partial order on the intervals: $A \rightarrow D$: A ends before D

Topological sort of the intervals

"i maximal candidate for $U"\!:\,i$ covers a point of U that is not covered by any interval "after" i

Input/Output

Input: (X, \mathcal{R}) where X is a set of points, \mathcal{R} a family of ranges (= subsets of X) and $\bigcup \mathcal{R} = X$ **Output:** a subset *Cov* of \mathcal{R} such that *Cov* is a covering of X

Greedy Algorithm

 \implies which conditions for Cov to be a cardinal minimum covering ?

Sufficient conditions

lf:

- 1. there exists a partial order \preceq on $\mathcal R$ such that $(\mathcal R, \preceq)$ is anti-arborescent
- 2. $\forall x \in X$, the set $\{r \in \mathcal{R}, x \in r\}$ admits a maximum according to \preceq
- **3**. $\forall r_1, r_2 \in \mathcal{R}$, $\forall r, r_1 \prec r \prec r_2$, $r_1 \cap r_2 \subseteq r$

Sufficient conditions

lf:

- 1. there exists a partial order \preceq on $\mathcal R$ such that $(\mathcal R, \preceq)$ is anti-arborescent
- 2. $\forall x \in X$, the set $\{r \in \mathcal{R}, x \in r\}$ admits a maximum according to \leq
- **3**. $\forall r_1, r_2 \in \mathcal{R}$, $\forall r, r_1 \prec r \prec r_2$, $r_1 \cap r_2 \subseteq r$

Sufficient conditions

lf:

- 1. there exists a partial order \preceq on $\mathcal R$ such that $(\mathcal R, \preceq)$ is anti-arborescent
- 2. $\forall x \in X$, the set $\{r \in \mathcal{R}, x \in r\}$ admits a maximum according to \leq
- **3**. $\forall r_1, r_2 \in \mathcal{R}$, $\forall r, r_1 \prec r \prec r_2$, $r_1 \cap r_2 \subseteq r$

Sufficient conditions

lf:

- 1. there exists a partial order \preceq on $\mathcal R$ such that $(\mathcal R, \preceq)$ is anti-arborescent
- 2. $\forall x \in X$, the set $\{r \in \mathcal{R}, x \in r\}$ admits a maximum according to \leq
- **3**. $\forall r_1, r_2 \in \mathcal{R}$, $\forall r, r_1 \prec r \prec r_2$, $r_1 \cap r_2 \subseteq r$

Back to the original problem

Problem

Given a 2D digital object S, compute a finite set of balls that:

- \blacktriangleright covers all the points of S and no point of $\mathbb{Z}^2 \setminus S$
- *is of minimum cardinality.*

Back to the original problem

Problem

Given a 2D digital object S, compute a finite set of balls that:

- covers all the points of S and no point of $\mathbb{Z}^2 \backslash S$
- *is of minimum cardinality.*

Link with set cover problem: X=S; set of ranges $\mathcal R$ is unknown but should "grab" the set of all digital balls included in S

Back to the original problem

Problem

Given a 2D digital object S, compute a finite set of balls that:

- covers all the points of S and no point of $\mathbb{Z}^2 \setminus S$
- *is of* **minimum cardinality**.

Link with set cover problem: X = S; set of ranges \mathcal{R} is unknown but should "grab" the set of all *digital balls* included in S

▶ Digital ball b = subset of \mathbb{Z}^2 for which there exists a ball b such that $Dig(b) = \mathring{b} \cap \mathbb{Z}^2 = b$

Grabbing maximal digital balls

Property

For any maximal digital ball **b** included in S, there exists a ball \mathscr{C} such that $Dig(\mathscr{C}) = \mathbf{b}$ and \mathscr{C} has at least two points of $\mathbb{Z}^2 \backslash S$ on its boundary.

 \Longrightarrow compute the cropped Voronoi diagram of $\mathbb{Z}^2\backslash S = \mathrm{Vor}^{\sqcap}(S)$

Grabbing maximal digital balls

Property

For any maximal digital ball **b** included in *S*, there exists a ball \mathfrak{C} such that $Dig(\mathfrak{C}) = \mathbf{b}$ and \mathfrak{C} has at least two points of $\mathbb{Z}^2 \backslash S$ on its boundary.

 \implies compute the cropped Voronoi diagram of $\mathbb{Z}^2 \backslash S = \mathsf{Vor}^{\sqcap}(S)$

Set of open balls 38

 $\mathcal{B} = \{ \mathfrak{G} \text{ s.t. } Dig(\mathfrak{G}) \text{ is a maximal digital ball in } S \}$ $\mathsf{Vor}^{\sqcap}(S) \text{ is the set of centers of balls of } \mathcal{B}$

Grabbing maximal digital balls

Property

For any maximal digital ball **b** included in *S*, there exists a ball \mathfrak{C} such that $Dig(\mathfrak{C}) = \mathbf{b}$ and \mathfrak{C} has at least two points of $\mathbb{Z}^2 \backslash S$ on its boundary.

 \implies compute the cropped Voronoi diagram of $\mathbb{Z}^2 \backslash S = \mathsf{Vor}^{\sqcap}(S)$

Set of open balls 38

 $\mathcal{B} = \{ \mathfrak{G} \text{ s.t. } Dig(\mathfrak{G}) \text{ is a maximal digital ball in } S \}$ $\mathsf{Vor}^{\sqcap}(S) \text{ is the set of centers of balls of } \mathfrak{B}$

If S has no hole, then $\operatorname{Vor}^{\sqcap}(S)$ is a tree \mathcal{T} . \blacktriangleright partial order $\leq_{\mathcal{T}}$ on \mathscr{B} by picking a sink

Sufficient conditions

lf:

1. there exists a partial order $\leq_{\mathcal{T}}$ such that $(\mathcal{B}, \leq_{\mathcal{T}})$ is anti-arborescent \checkmark

2. $\forall x \in S$, the set $\{ b \in \mathcal{B}, x \in b \}$ admits a maximum according to $\leq_{\mathcal{T}}$

3. $\forall b_1, b_2 \in \mathcal{B}, \ \forall b, b_1 <_{\mathcal{T}} b <_{\mathcal{T}} b_2, \ b_1 \cap b_2 \subseteq b$

Sufficient conditions

lf:

- 1. there exists a partial order $\leq_{\mathcal{T}}$ such that $(\mathcal{B}, \leq_{\mathcal{T}})$ is anti-arborescent \checkmark
- 2. $\forall x \in S$, the set $\{ \mathfrak{b} \in \mathfrak{B}, x \in \mathfrak{b} \}$ admits a maximum according to $\leq_{\mathcal{T}}$
- $\textbf{3. } \forall \boldsymbol{\ell}_1, \boldsymbol{\ell}_2 \in \boldsymbol{\mathscr{B}}, \ \forall \boldsymbol{\ell}, \boldsymbol{\ell}_1 <_{\mathcal{T}} \boldsymbol{\ell} <_{\mathcal{T}} \boldsymbol{\ell}_2, \ \boldsymbol{\ell}_1 \cap \boldsymbol{\ell}_2 \subseteq \boldsymbol{\ell} \\$

Sufficient conditions

lf:

- 1. there exists a partial order $\leq_{\mathcal{T}}$ such that $(\mathcal{B},\leq_{\mathcal{T}})$ is anti-arborescent \checkmark
- 2. $\forall x \in S$, the set $\{ \mathfrak{b} \in \mathfrak{B}, x \in \mathfrak{b} \}$ admits a maximum according to $\leq_{\mathcal{T}}$
- **3**. $\forall b_1, b_2 \in \mathcal{B}, \ \forall b, b_1 <_{\mathcal{T}} b <_{\mathcal{T}} b_2, \ b_1 \cap b_2 \subseteq b$

then the greedy algorithm outputs a cardinal minimum covering of S.

Sufficient conditions

lf:

- 1. there exists a partial order $\leq_{\mathcal{T}}$ such that $(\mathcal{B},\leq_{\mathcal{T}})$ is anti-arborescent \checkmark
- 2. $\forall x \in S$, the set $\{ \mathfrak{b} \in \mathfrak{B}, x \in \mathfrak{b} \}$ admits a maximum according to $\leq_{\mathcal{T}}$
- 3. $\forall b_1, b_2 \in \mathcal{B}, \ \forall b, b_1 <_{\mathcal{T}} b <_{\mathcal{T}} b_2, \ b_1 \cap b_2 \subseteq b$

then the greedy algorithm outputs a cardinal minimum covering of S.

Sufficient conditions

lf:

- 1. there exists a partial order $\leq_{\mathcal{T}}$ such that $(\mathcal{B},\leq_{\mathcal{T}})$ is anti-arborescent \checkmark
- 2. $\forall x \in S$, the set $\{ \mathfrak{b} \in \mathfrak{B}, x \in \mathfrak{b} \}$ admits a maximum according to $\leq_{\mathcal{T}}$
- 3. $\forall b_1, b_2 \in \mathcal{B}, \ \forall b, b_1 <_{\mathcal{T}} b <_{\mathcal{T}} b_2, \ b_1 \cap b_2 \subseteq b$

then the greedy algorithm outputs a cardinal minimum covering of S.

Sufficient conditions

lf:

- 1. there exists a partial order $\leq_{\mathcal{T}}$ such that $(\mathcal{B},\leq_{\mathcal{T}})$ is anti-arborescent \checkmark
- 2. $\forall x \in S$, the set $\{ \mathfrak{b} \in \mathfrak{B}, x \in \mathfrak{b} \}$ admits a maximum according to $\leq_{\mathcal{T}} \checkmark$
- **3**. $\forall b_1, b_2 \in \mathcal{B}, \ \forall b, b_1 <_{\mathcal{T}} b <_{\mathcal{T}} b_2, \ b_1 \cap b_2 \subseteq b$

then the greedy algorithm outputs a cardinal minimum covering of S.

Another set of ranges

Set **B** of maximal digital balls

 $\mathcal{B} = \{ \mathbf{b} \subseteq S \text{ s.t. } \exists \mathbf{\ell}, Dig(\mathbf{\ell}) = \mathbf{b} \}$

Set **B** of maximal digital balls

 $\mathcal{B} = \{ \mathbf{b} \subseteq S \text{ s.t. } \exists \mathbf{\ell}, Dig(\mathbf{\ell}) = \mathbf{b} \}$

Partial order \mathcal{T} on $\mathscr{B} \Rightarrow$ Partial order T on \mathcal{B}

 $\begin{aligned} &\mathsf{Rep}(\boldsymbol{b}) = \sup_{\mathcal{T}} \{ \boldsymbol{v} \in \boldsymbol{\mathcal{B}}, Dig(\boldsymbol{v}) = \boldsymbol{b} \}. \\ & (\mathsf{We can have } Dig(\mathsf{Rep}(\boldsymbol{b})) \neq \boldsymbol{b}.) \end{aligned}$

Set **B** of maximal digital balls

 $\mathcal{B} = \{ \mathbf{b} \subseteq S \text{ s.t. } \exists \mathbf{\ell}, Dig(\mathbf{\ell}) = \mathbf{b} \}$

Partial order \mathcal{T} on $\mathscr{B} \Rightarrow$ Partial order T on \mathscr{B}

 $\begin{aligned} &\mathsf{Rep}(\boldsymbol{b}) = \sup_{\mathcal{T}} \{ \boldsymbol{b} \in \boldsymbol{\mathcal{B}}, Dig(\boldsymbol{b}) = \boldsymbol{b} \}. \\ & (\mathsf{We can have } Dig(\mathsf{Rep}(\boldsymbol{b})) \neq \boldsymbol{b}.) \end{aligned}$

Set **B** of maximal digital balls

 $\mathcal{B} = \{ \mathbf{b} \subseteq S \text{ s.t. } \exists \mathbf{\ell}, Dig(\mathbf{\ell}) = \mathbf{b} \}$

Partial order \mathcal{T} on $\mathscr{B} \Rightarrow$ Partial order T on \mathscr{B}

 $\begin{aligned} &\mathsf{Rep}(\boldsymbol{b}) = \sup_{\mathcal{T}} \{ \boldsymbol{v} \in \boldsymbol{\mathcal{B}}, Dig(\boldsymbol{v}) = \boldsymbol{b} \}. \\ & (\mathsf{We can have } Dig(\mathsf{Rep}(\boldsymbol{b})) \neq \boldsymbol{b}.) \end{aligned}$

Set **B** of maximal digital balls

 $\mathcal{B} = \{ \mathbf{b} \subseteq S \text{ s.t. } \exists \mathbf{\ell}, Dig(\mathbf{\ell}) = \mathbf{b} \}$

Partial order \mathcal{T} on $\mathscr{B} \Rightarrow$ Partial order T on \mathscr{B}

 $\mathsf{Rep}(\boldsymbol{b}) = \sup_{\mathcal{T}} \{ \boldsymbol{b} \in \boldsymbol{\mathcal{B}}, Dig(\boldsymbol{b}) = \boldsymbol{b} \}.$ (We can have $Dig(\mathsf{Rep}(\boldsymbol{b})) \neq \boldsymbol{b}.$)

Property

 (\mathcal{B},\leq_T) is a poset and is anti-arborescent

Sufficient conditions

lf:

- 1. there exists a partial order \leq_T such that (\mathcal{B}, \leq_T) is anti-arborescent \checkmark
- 2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_T
- 3. $\forall b_1, b_2 \in \mathcal{B}, \forall b, b_1 <_T b <_T b_2, b_1 \cap b_2 \subseteq b$: true for \mathcal{B} [Lieutier 04] + technical properties of the sets $\{\delta, Dig(\delta) = b\} \checkmark$

then the greedy algorithm outputs a cardinal minimum covering of S.

Sufficient conditions

lf:

- 1. there exists a partial order \leq_T such that (\mathcal{B}, \leq_T) is anti-arborescent \checkmark
- 2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_T
- 3. $\forall b_1, b_2 \in \mathcal{B}, \forall b, b_1 <_T b <_T b_2, b_1 \cap b_2 \subseteq b$: true for \mathcal{B} [Lieutier 04] + technical properties of the sets $\{\delta, Dig(\delta) = b\} \checkmark$

then the greedy algorithm outputs a cardinal minimum covering of S.

Sufficient conditions

lf:

- 1. there exists a partial order \leq_T such that (\mathcal{B}, \leq_T) is anti-arborescent \checkmark
- 2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_T
- 3. $\forall b_1, b_2 \in \mathcal{B}, \forall b, b_1 <_T b <_T b_2, b_1 \cap b_2 \subseteq b$: true for \mathcal{B} [Lieutier 04] + technical properties of the sets $\{\delta, Dig(\delta) = b\} \checkmark$

then the greedy algorithm outputs a cardinal minimum covering of S.

Sufficient conditions

lf:

- 1. there exists a partial order \leq_T such that (\mathcal{B}, \leq_T) is anti-arborescent \checkmark
- 2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_T
- 3. $\forall b_1, b_2 \in \mathcal{B}, \forall b, b_1 <_T b <_T b_2, b_1 \cap b_2 \subseteq b$: true for \mathcal{B} [Lieutier 04] + technical properties of the sets $\{\delta, Dig(\delta) = b\} \checkmark$

then the greedy algorithm outputs a cardinal minimum covering of S.

Sufficient conditions

lf:

- 1. there exists a partial order \leq_T such that (\mathcal{B}, \leq_T) is anti-arborescent \checkmark
- 2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_T
- 3. $\forall b_1, b_2 \in \mathcal{B}, \forall b, b_1 <_T b <_T b_2, b_1 \cap b_2 \subseteq b$: true for \mathcal{B} [Lieutier 04] + technical properties of the sets $\{\delta, Dig(\delta) = b\} \checkmark$

then the greedy algorithm outputs a cardinal minimum covering of S.

Sufficient conditions

lf:

- 1. there exists a partial order \leq_T such that (\mathcal{B}, \leq_T) is anti-arborescent \checkmark
- 2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_T
- 3. $\forall b_1, b_2 \in \mathcal{B}, \forall b, b_1 <_T b <_T b_2, b_1 \cap b_2 \subseteq b$: true for \mathcal{B} [Lieutier 04] + technical properties of the sets $\{\delta, Dig(\delta) = b\} \checkmark$

then the greedy algorithm outputs a cardinal minimum covering of S.

Sufficient conditions

lf:

- 1. there exists a partial order \leq_T such that (\mathcal{B}, \leq_T) is anti-arborescent \checkmark
- 2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_T
- 3. $\forall b_1, b_2 \in \mathcal{B}, \forall b, b_1 <_T b <_T b_2, b_1 \cap b_2 \subseteq b$: true for \mathcal{B} [Lieutier 04] + technical properties of the sets $\{\delta, Dig(\delta) = b\} \checkmark$

then the greedy algorithm outputs a cardinal minimum covering of S.

Sufficient conditions

lf:

- 1. there exists a partial order \leq_T such that (\mathcal{B}, \leq_T) is anti-arborescent \checkmark
- 2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_T
- 3. $\forall b_1, b_2 \in \mathcal{B}, \forall b, b_1 <_T b <_T b_2, b_1 \cap b_2 \subseteq b$: true for \mathcal{B} [Lieutier 04] + technical properties of the sets $\{\delta, Dig(\delta) = b\} \checkmark$

then the greedy algorithm outputs a cardinal minimum covering of S.

Sufficient conditions

lf:

- 1. there exists a partial order \leq_T such that (\mathcal{B}, \leq_T) is anti-arborescent \checkmark
- 2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_T
- 3. $\forall b_1, b_2 \in \mathcal{B}, \forall b, b_1 <_T b <_T b_2, b_1 \cap b_2 \subseteq b$: true for \mathcal{B} [Lieutier 04] + technical properties of the sets $\{\delta, Dig(\delta) = b\} \checkmark$

then the greedy algorithm outputs a cardinal minimum covering of S.

Sufficient conditions

lf:

- 1. there exists a partial order \leq_T such that (\mathcal{B}, \leq_T) is anti-arborescent \checkmark
- 2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_T
- 3. $\forall b_1, b_2 \in \mathcal{B}, \forall b, b_1 <_T b <_T b_2, b_1 \cap b_2 \subseteq b$: true for \mathcal{B} [Lieutier 04] + technical properties of the sets $\{\delta, Dig(\delta) = b\} \checkmark$

then the greedy algorithm outputs a cardinal minimum covering of S.

Sufficient conditions

lf:

- 1. there exists a partial order \leq_T such that (\mathcal{B}, \leq_T) is anti-arborescent \checkmark
- 2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to \leq_T
- 3. $\forall b_1, b_2 \in \mathcal{B}, \forall b, b_1 <_T b <_T b_2, b_1 \cap b_2 \subseteq b$: true for \mathcal{B} [Lieutier 04] + technical properties of the sets $\{\delta, Dig(\delta) = b\} \checkmark$

then the greedy algorithm outputs a cardinal minimum covering of S.

Sufficient conditions

lf:

- 1. there exists a partial order \leq_T such that (\mathcal{B}, \leq_T) is **anti-arborescent**
- 2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to $\leq_T \checkmark$
- 3. $\forall b_1, b_2 \in \mathcal{B}, \forall b, b_1 <_T b <_T b_2, b_1 \cap b_2 \subseteq b$: true for \mathcal{B} [Lieutier 04] + technical properties of the sets $\{\delta, Dig(\delta) = b\} \checkmark$

then the greedy algorithm outputs a cardinal minimum covering of S.

Sufficient conditions

lf:

- 1. there exists a partial order \leq_T such that (\mathcal{B}, \leq_T) is **anti-arborescent**
- 2. $\forall x \in S$, the set $\{b \in \mathcal{B}, x \in b\}$ admits a maximum according to $\leq_T \checkmark$
- 3. $\forall b_1, b_2 \in \mathcal{B}, \forall b, b_1 <_T b <_T b_2, b_1 \cap b_2 \subseteq b$: true for \mathscr{B} [Lieutier 04] + technical properties of the sets $\{\mathscr{E}, Dig(\mathscr{E}) = b\} \checkmark$

then the greedy algorithm outputs a cardinal minimum covering of S.

Some results

Implementation using DGtal (digital sets), CGAL (Voronoi diagram, disks) and Boost Graphs (topological order).

Thank you !