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Abstract. In discrete geometry, the Distance Transformation and the
Medial Axis Extraction are classical tools for shape analysis. In this pa-
per, we present a Hierarchical Discrete Medial Axis, based on a pyramidal
representation of the object, in order to efficiently create a sphere-tree,
which has many applications in collision detection or image synthesis.

1 Introduction

In interactive environments, hierarchical representations are classical tools in
many applications, e.g. in image synthesis, multi-resolution representations and
interference detection, as allowing a fast interaction location. The Bounding Vol-
ume Hierarchies (BVH) consist in coverage with an increasing number of simple
volumes (spheres [19, 16, 10], axis-aligned bounding boxes [20], oriented bounding
boxes [12], . . . ) on different levels, ensuring that each part of the object covered
by a children node must be covered by the parent node. Hence the collision de-
tection between two hierarchical models is computed by a recursive process in
which overlaps between pairs of primitive volumes are tested. The choice of the
primitive volume is important for the BVH properties and sphere-trees are very
interesting for interference detection [12]. Nevertheless, as they are bad estima-
tors of the object geometry, the hierarchy needs an effective construction of the
tree, reducing the error between the object and the associated set of spheres.

In computational geometry, first algorithms for sphere-tree construction were
based on Octree data structures which consist in recursive spatial subdivisions
of the object [16, 10, 13]. Later, efficient algorithms were proposed, based on
the object Medial Axis (MA) [4], which corresponds to a skeletal representation
of the object. MA extraction is based in a Voronoi Diagram [14, 6, 7], and the
sphere-tree is produced by complex optimization heuristics to reduce the number
of spheres.The error is controled by an approximated Haussdorf distance.

In discrete geometry, the study of multiresolution representation of digital
objects has been carried out using an homotopic thinning [18]. However this
approach should be considered as a medial axis filtering instead of a hierarchical
reduction of the set of balls. Our goal is to develop a hierarchical structure which
is flexible with respect to the reversibility of the construction. Indeed the Discrete
Medial Axis (DMA) is a convenient tool to represent objects in digital space,
thanks to its reversibility : from the DMA balls, we can exactly reconstruct
the original shape. The exact euclidian DMA can be efficiently computed from



Distance Transformation (DT) [9]. Furthermore, a discrete approach benefits
from the exact computation of the error between the object and the hierarchy
(at each level) with a Hamming distance.

In this paper, we present an original method for sphere-tree construction
(sketched in Figure 1): the sets of spheres at each level are obtained by a DMA
extraction at different object resolution levels in a regular pyramid. Preliminaries
are presented in Section 2. The sphere-tree construction is achieved by linking
the spheres on consecutive levels. This method is first defined for a reversible
model for volume synthesis (Sections 3.1), however it can be easily adapted for
interactive environments (Section 3.2). Experiments in Section 4 also show that
this last modification reduces the error. Finally we obtain a d-dimensional generic
sphere-tree computation in linear time for any discrete distance and including
pyramidal model.
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Fig. 1. The main stages of the sphere-tree construction.

2 Preliminaries

As sketched in the introduction, the methods is based on a regular pyramid,
where set of spheres are produced by a DMA extraction on each level. This
section presents these preliminary stages.

2.1 Pyramidal Model

In image analysis, the pyramidal structure is a convenient tool [8, 15]. In di-
mension 2, a pyramid P of depth N + 1 can be defined by a set of 2D images
{F0, ...,FN}. The regular pyramid construction is a bottom-up process: FN is



the original image, the upper levels are its representations at lower resolutions
in a quad-tree approach; the pixel size at each level is 4 times bigger than at
next level. The pixel color is based on the 4 pixels and computed by a transfer
function (cf Figure 2).

We can generalize this process to any dimension d with an integer factor f
for the voxel size expansion. In other words, a voxel v′ at level L − 1 contains
fd voxels {v1, ..., vfd} at level L. So, the transfer function, denotedM (standing
for Model), is a mapping between these voxels:

Definition 1. M is a model between FL and FL−1(FL−1 =M(FL)) if
∀v′, ∃{v1, ..., vfd} \ FL−1(v′) =M(FL(v1), ...FL(vfd))

In the proposed bounding volume hierarchy approach, the original object
should be completely covered by each level of the hierarchy. So, we used the
OR-Model: each voxel at level L−1 belongs to FL−1 when at least one of the fd

voxels that it contains (at level L) belongs to FL. Figure 2 shows an application
of this model on 2D images.
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Fig. 2. Consecutive levels on a regular pyramid with the OR-Model.

2.2 Discrete Medial Axis and Discrete Power Diagram

Discrete Medial Axis. The Medial Axis is a shape descriptor first presented
by Blum in 1967 [4] in order to simulate the wavefront propagation from its
boundary (prairie fire model). The medial axis is defined by (1) the locus of of
points equidistant from two sides of the object, or (2) the locus of centers of
maximals balls included in the object (a ball is maximal if it is not included in
any other ball included in the object) [17].

In binary images, the Discrete Medial Axis (DMA) can be efficiently ex-
tracted from a Distance Transformation (DT). It consists in labeling each voxel
of an object with distance of the closest voxel of the complement (background).
In other words, the DT value at a voxel v corresponds to the radius of the largest
discrete ball centered in s included in the object. From the Euclidean DT, linear
time algorithms exist to extract the set of maximal balls [9].



Discrete Power Diagram. In computational geometry, the power diagram
(also known as the Laguerre diagram) is a generalization of the Voronoi Dia-
gram [3]. This tool is widely used for ball interaction computation and surface
reconstruction [5, 2, 1]. We consider a set of sites S = {si}, such that each point
si is associated with a radius ri. The power σi(p) of a point p according to the
site si is given by:

σi(p) = d(p, si)− ri (1)

If σi(p) < 0, p belongs to the ball of center si and radius ri. The power diagram
is based on the metric induced by σ and is a decomposition of the object into
cells C = {ci} associated with each site si such that:

ci = {p ∈ Rd : σi(p) < σj(p), i 6= j} (2)

In discrete geometry, the power labeling is defined as the power diagram
labeling of grid points. More precisely, we assign to each grid point the index of
the cell it belongs to. In [9], authors have illustrated the links between MA balls
and power diagram cells.

3 Sphere-tree construction

As the set of maximal spheres can be extracted at each level of the pyramid, it
remains to link the spheres of consecutive levels to complete the sphere-tree con-
struction. The following section first presents a graph construction by a simple
linking process, and its reduction in different sphere-trees.

3.1 Power diagram and Sphere-DAG

In order to link a sphere s at level N and a sphere t at level N − 1, a simple
intersection test can be used to express the covering of a part of s by t. We note
t→ s an edge between t and s:

t→ s⇔ t ∩ s 6= ∅ (3)

As these edges are always oriented from a sphere t to a sphere s at next level,
the graph defined by the equation is a Direct Acyclic Graph (DAG), where nodes
are DMA spheres at different levels. The DAG construction needs to test the
intersection between two spheres of consecutive levels, so computation time is
in O(n2) for n spheres at the lower level. However, in a correct hierarchy, each
part of the object does not need to be covered by a large set of spheres. Hence,
this Sphere-DAG is too exhaustive for an efficient sphere-tree simplification. In
order to reduce the number of spheres of the complete Sphere-DAG, we use the
discrete power diagram, defined in Section 2.2. Indeed it is a voxel labeling of
discrete points by the sphere which best covers it. Let v be a voxel of FN at
level N . As the upper representation FN−1 at level N − 1 is built with a model
M, v is included in a voxel v′. We denote v′ = R(v). Including models, like



the “OR” model defined in Section 2.1, ensure that FN−1(v′) = 1. So we can
compare the power diagrams CN (from FN ) and CN−1 (from FN−1). If v belongs
to the cell CN (si) and v′ to CN−1(tj), the sphere si (at level N) covers a part of
FN which includes the voxel v, and the representation of this part in FN−1 is
covered by the sphere tj . In other words, tj covers a part of si, and we represent
it by linking tj and si.

Definition 2. t is a parent sphere for s (t→ s) in the Sphere-DAG if
∃v ∈ FN\ (v ∈ CN (s) ∧R(v) ∈ CN−1(t))

By an overlapping of CN and CN−1 we can detect all relations by only one
scan on each voxels at level N (cf Figure 3). The algorithm 1 is generic for
objects in dimension d and for any including pyramidal model.

s1 s2

s3
s4

s5

t1

t2

t3
s6

s1 s2 s3 s4 s5 s6

t1 t3t2

Fig. 3. Overlapping of power diagrams CN and CN−1 and the associated sphere DAG
between FN−1 and FN . For example, the cell s1 in CN is covered by both t1 and t2 in
CN−1, so we have t1 → s1, t2 → s1.

Algorithm 1 Generic Algorithm for Sphere-DAG Computation
1: Input: FN the original object,
2: AMN its Discrete Medial Axis and CN its Discrete Power Diagram
3: Output: T = {AM0,AM1, . . . ,AMN} the Sphere-tree
4: while |AMN | > 1 do
5: FN−1 ←M(FN ) {with M the pyramidal Model function}
6: Extraction of AMN−1 and CN−1

7: for all v such as v is a voxel ∈ FN do
8: v′ ← S(v)
9: if (v ∈ CN (s)) and (v′ ∈ CN−1(t)) then

10: Linking the sphere t ∈ AMN−1 with s ∈ AMN

11: end if
12: end for
13: N ← N − 1
14: end while



Theorem 1. The generic Sphere-DAG construction process is linear in the num-
ber of voxels in FN .

Proof. We consider that the original object FN is composed of m voxels (or cd

voxels if the object is bounded by a cube of side c in dimension d). The Medial
Axis extraction and power diagram computation are in O(cd) [9]. Furthermore,
the construction of FN−1 and the linking between the two sets of spheres can be
also computed in one scan of voxels in FN . So the computation of one iteration
of the while loop (FN−1 construction and sphere linking) is in O(cd). Next, we
work with the object FN−1, whose size is fd times smaller, and the computation
of FN−2 is in O( cd

fd ), and so on. Thus the overall computation time for the whole

hierarchy is given by the geometric series cd + cd

fd + cd

(fd)2
+ ... = cd

∑N
i=0

1
(fd)i

bounded by cd

1− 1
fd

= cd fd

fd−1
. Hence the generic Sphere-DAG computation pro-

cess is linear in the number of voxels in FN . �

3.2 Reversible and Extended Sphere-Trees

Usually, in a bounding volume hierarchy each node has to cover the union of parts
of the object covered by its children nodes, and not the whole volume of each
child. Here, our spheres result from DMA extraction, ensuring the fact that they
cover a part of the object without error. So, each sphere has to be completely
covered by (at least) one parent sphere at upper level. However, this condition
implies an expansion of parent spheres and a modification of the representation.
Two methods can be distinguished, respecting either the pyramidal reversibility
or the BVH properties.

Reversible Sphere-Tree To compute a sphere-tree from the sphere-DAG, we
extract a spanning tree, keeping the parent sphere for each node which best
covers it. We can easily determine if a sphere s1(cs1 , rs1) is covered by another
sphere s2(cs2 , rs2) comparing the radius rs2 with the distance between centers
d(cs1 , cs2) added to the radius rs1 :

s1 ⊆ s2 ⇔ d(cs1 , cs2) + rs1 − rs2 ≤ 0 (4)

However it is not sufficient if we want to know if the sphere is covered by more
than one sphere.We reformulate the previous covering relation considering the
σ function defined in the power diagram description (in Section 2.2):

Definition 3. let s(cs, rs) a sphere at level N and t(ct, rt) at level N − 1, the
covering power σ′t(s) is given by

σ′t(s) = d(S(cs), ct)− rt + rs

If σ′t(s) ≤ 0 then s is entirely covered by t. More precisely, the intersection
between s and t increases when σ′t(s) is small. So, for a children sphere s with p



parents t1, ..., tp, we choose the parent tj where σ′tj
(s) is minimal, in order to get

the best covering of s. In fact, we can immediately determine the best parent:
for a sphere si with radius rsi we can only search the minimum of the quantity
d(S(csi), ctj )−rtj for each parent tj . With the computation of the power diagram
CN−1, it corresponds to the function σtj

(S(csi
)) of the point S(csi

) for the site
tj . The minimum of σ is reached at tj if the point S(csi

) is included in the cell
associated to tj . Hence, for each sphere si at level N , we just need to detect
the position of S(csi), which represents the center csi at level N − 1. If S(csi)
belongs to the cell associated to the sphere tj then tj is the parent sphere of si.
Figure 4 shows this computation in the overlapped power diagrams of Figure 3.

s1 s2 s3 s4 s5 s6

t1 t2 t3

s1 s2

s3
s4

s5

t1

t2

t3
s6

Fig. 4. Sphere-tree reduction of the previous DAG. We can also create the recovering
diagram, extending each cell in CN−1 (associated with a sphere tj) as the union of
children cells.

Extended Sphere-Tree In order to respect the inclusion property, we could
replace each parent sphere by the minimal bounding sphere of its children. How-
ever, the minimal covering sphere computation is not very efficient since the
problem is related to the minimal enclosing ball of a set of points in dimension d
[11]. In order to maintain the reversibility of multiresolution representations of
the original object, we propose an original approach, which consists in extending
the radius of parent spheres.

Theorem 2. Let a sphere t and its set of children spheres {si}. The sphere t is
a minimal bounding sphere centered at ct for its children spheres if its radius rt
is extended by r′t = σ′t(max), where max is the child sphere with maximal σ′t.

Proof. For two spheres s, t, from Definition 3 we know that t entirely covers s if
σ′t(s) ≤ 0. Moreover, if σ′t(s) = 0 we have d(S(cs), ct) + rs = rt, so the sphere t
is the minimal bounding sphere for s centered at ct. Let r′t the quantity to add
to rt in order to have a covering of s by t. So, we have:

d(S(cs), ct)− (rt + r′t) + rs = 0⇔ r′t = d(S(cs)), ct − rt + rs ⇔ r′t = σ′t(s)



So σ′t(s) defines the extension quantity. Now, for each parent sphere tj , we search
among its children si the sphere smax, where σ′t(smax) is maximal. Extending the
radius with this value, we substract σ′t(smax) at all σ′t(i), so we have σ′t(i) ≤ 0 for
all children spheres si and σ′t(max) = 0. Hence t becomes the minimal bounding
sphere of its children centered at ct.�

The Algorithm 2 adds this extending process to the reversible sphere-tree com-
putation.

Algorithm 2 Generic Algorithm for Exact Sphere-tree Computation
1: Input: FN the original object,
2: AMN its Discrete Medial Axis and CN its Discrete Power Diagram
3: Output: {AM0,AM1, . . . ,AMN} the Sphere-tree
4: while |AMN | > 1 do
5: FN−1 ←M(FN ) {with M a bounding model}
6: Extraction of AMN−1 and CN−1

7: for each sphere s : (c(s), r(s)) ∈ AMN do
8: if S(c(s)) ∈ CN−1(t) then
9: t is the parent sphere for s

10: end if
11: end for
12: for each sphere t : (c(t), r(t)) ∈ AMN−1 do
13: if t has no child then
14: AMN−1 ← AMN−1 − {t}
15: else
16: r′ ← max(σ′t(s)) {for all s child of t}
17: r(t)← r(t) + r′

18: end if
19: end for
20: FN−1 ← ∪t { t ∈ AMN−1 }
21: N ← N − 1
22: end while

As radii have been extended, we have to modify FN−1 by a reverse recon-
struction of the object with the new set of spheres. For n spheres in AMN ,
the linking computation and the extension of the spheres are in O(n), and the
reconstruction process in O(cd). As the number of spheres n is lower than the
size of the object (cd), an iteration is still performed in O(cd). So this process is
also in O(cd) like the Sphere-DAG Computation (cf Theorem 1).

From the Algorithm 2, we have a sphere-tree which respects the covering
condition. Nevertheless, a modification of spheres radii is performed, although
the spheres were first defined to ensure the distribution of error along the object.
So the extension of radii disturbs the reversibility property on each sphere-
tree level. On the other hand, when the value σ′t(smax) is negative, the parent
spheres radii decreases, generating an improvement of representation tightness.
Moreover, as we simplify the sphere-tree by deleting the spheres without child,



this algorithm may reduce the depth of the tree. The following section illustrates
these observations on real images. In order to reduce the error with the original
object, the radii extension is evaluated for each node with its set of leaves (i.e.
spheres of the original object).

4 Experiments

This section presents a comparison between the Reversible and the Extended
Algorithms, with experiments on several 3D discrete objects in .vol or .longvol
formats, defined in the simplevol library. Distance Transformation, Reduce
Discrete Medial Axis Extraction and Discrete Power Diagram are computed
thanks to the MAEVA Toolkit1.
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Fig. 5. Experiments for Al.100.vol and ArachnidWarrior.100.vol.
The left graph shows that the decreasing of the sphere number is faster on the Extended
case, and the depht of the hierarchy is smaller. The dynamic extension process also
produces an error reduction as we can see on the right graph.

1 Simplevol and MAEVA Toolkit are available on http://gforge.liris.cnrs.fr/



Figure 5 shows differences between both algorithms on objects Al.100.vol
and ArachnidWarrior.100.vol2. The left graph presents the number of spheres
at each level. The right one details the percentage of error for each representation
over the original object. This error is computed with the Hamming Distance
which can be efficiently computed in our discrete model. As the experimental
objects have different number of voxels, we prefer to represent the Hamming
distance by a percentage representing the error volume added to the original
object.

4.1 Reversible Algorithm

As said in Section 2.1, the representation FL−1 is fd times smaller than FL in
number of voxels, as we can see in Figure 6. Thus, the associated Medial Axis
contains fewer spheres. However, the distance is computed between two voxel
centers in the discrete approach (here we use the square-euclidean distance), but
this distance also depends on the voxel sizes at each resolution level. That’s the
reason why we scale the spheres to the finer resolution level by a reconstruction
process. Moreover, at upper levels, the variability of radii is lower as the inter-
val of radii becomes smaller. This range remains low during the reconstruction
because all sphere radii are increased by the same value (at one level). So the
sphere-tree looks like an octree, as many spheres have the same radius. Never-
theless, the reconstruction ratio at an upper level is very high, and the spheres
overestimate the object geometry on this level.

2 3 4 5 6

Fig. 6. Comparison between the reversible pyramid and the dynamic reconstruction of
the extended version.

2 These objects are available on http://www.tc18.org/



4.2 Extended Algorithm

The experiments for the extended sphere-tree construction show that the dy-
namic reconstruction before the extension of radius simplifies the upper levels
(see Figure 6). As we delete spheres without child, the reduction of the sphere
number is faster than in the reversible algorithm. Moreover, in Algorithm 2 we
proposed a reconstruction of the upper level just after the extension of the ra-
dius of its spheres. The experiments show that this process controls the error
increasing which is higher in the reversible case. In order to reduce the incidence
of the final reconstruction process, we propose to fit one more time the spheres
by σ′t(smax) after the increasing. As the reconstruction has produced spheres
which overestimate the object, this final extension reduces the error.

5 Conclusion and Future Works

In this paper, we have presented an original method for a sphere-tree construc-
tion in discrete geometry. Its construction is based on the Discrete Medial Axis
of the object, as best algorithms in computational geometry [14, 6, 7], but we
benefit from the fact that we can efficiently extract a reversible skeleton. Hence
we extract reversible sets of spheres from levels of a regular pyramid. The sphere
linking at different levels is solved using properties of power diagrams. In or-
der to ensure the covering conditions, we also propose a fast method to obtain
bounding spheres of nodes, with radii extensions.

Moreover in discrete geometry, we can exactly measure the error with a
Hamming distance instead of a Haussdorf estimation. Experiments show that
in the reversible algorithm the error is bigger when we return at the original
resolution. However, the extended algorithm solves this problem and reduces
the error increasing, as we build a dynamic hierarchy.

The methods we have presented here are generic, they can be used in di-
mension d, and for any including model of the pyramid. We may extend these
methods for generic models. We can also imagine other heuristics in order to op-
timize the sphere-tree. For example, we could replace the extending treatment
by others minimal bounding sphere computations. However, the future works
could be oriented to the topology maintenance of the object, using adaptative
pyramids or morphological models, in order to reduce the error of the reversible
method.
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