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This paper focuses on the design of an effective method that computes the measure of circularity of a
part of a digital boundary. An existing circularity measure of a set of discrete points, which is used in
computational metrology, is extended to the case of parts of digital boundaries. From a single digital
boundary, two sets of points are extracted so that the circularity measure computed from these sets
is representative of the circularity of the digital boundary. Therefore, the computation consists of two
steps. First, the inner and outer sets of points are extracted from the input part of a digital boundary
using digital geometry tools. Next, the circularity measure of these sets is computed using classical tools
of computational geometry. It is proved that the algorithm is linear in time in the case of convex parts
thanks to the specificity of digital data, and is in O(n logn) otherwise. Experiments done on synthetic and
real images illustrate the interest of the properties of the circularity measure.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Accurately locate circles and accurately measure deviation with
a circular template are common problems in many fields of science
and engineering. The fields of application are as diverse as geology
[1], archeology [2], computer vision such as raster-to-vector conver-
sion [3] or video processing [4], computational metrology to test the
quality of manufactured parts [5–12], image processing and discrete
geometry to recognize digital circles [13–20].

This paper focuses on the design of an effective method that
computes the measure of circularity of a part of a digital boundary
previously extracted from a digital image. The circularity measure
of a given part of a digital boundary is a quantity that increases
with deviation from a piece of digital circle, called a digital arc. The
reader may find in the literature terms as diverse as compactness
[13,21], roundness [6,8–11,22], out-of-roundness [5,6,23], but we
prefer “circularity” [7,24] because it recalls the template with which
the data are compared to, that is the circle.

Although plenty of papers present methods for assessing the cir-
cularity of a set of points, as far as we know, only one paper dealt
with the circularity of digital boundaries, more than 20 years ago.
In [13], a digital disk recognition algorithm in O(n2) is presented
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in the first part, and a digital compactness evaluation algorithm for
digital convex objects in O(n3

√
n) is presented in the second part

(where n is the number of pixels of the digital boundary). The digital
compactness measure is defined as the ratio between area A of the
shape and area A′ of the smallest enclosing digital disk (where “the
smallest” is expressed in area unit, that is in number of pixels). As a
smallest enclosing digital disk may not be unique and as the smallest
enclosing Euclidean disk may not be a smallest enclosing digital disk,
areas of many digital disks have to be compared. This is why the
computational cost is rather high. This first attempt shows that the
problem is not trivial.

Moreover, naive methods that consist to find an easy-to-compute
point that is expected to be the centre of a circle separating the
shape from the background are only approximative. For instance, in
[25], the barycentre of a set of pixels is assumed to be the centre of
a separating circle, but Fig. 1 shows that if the barycentre of a set
of pixels is computed, pixels that do not belong to the set may be
closer to the barycentre than pixels that belong to the set, even if it
turns out that the set of pixels can be separated from the pixels that
do not belong to the set.

A well-known circularity measure in the Euclidean plane is
4�A/P2 where A is the area and P the perimeter. The digital equiv-
alent of this circularity measure was introduced by [21], but even
with a convergent perimeter estimation based on digital straight
segment recognition (see [26,27]) the measure is theoretically un-
satisfactory: digital circles may have different values that are always
strictly less than 1. Moreover, this kind of measure has several other
drawbacks in practice: (i) it is not perfectly scale invariant, (ii) it is
not easy to interpret (iii) it is not computable on parts of a digital
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Fig. 1. A digital disk is depicted with pixels. In each pixel, the distance of its centre
to the barycentre of the digital disk (located with a cross) is written. Some pixels
that do not belong to the disk are closer (3.2) to the barycentre than some pixels
that belong to the disk (3.24).

boundary and (iv) it is not able to provide the parameters of a circle
that is close to the data. This measure may be used for a coarse and
quick approximation of the circularity of a digital boundary, but in
the general case, another measure is needed.

Three kinds of methods may be found is the literature:

(1) Methods based on the circular Hough transform [28–30] al-
low extraction, detection and recognition of digital arcs. Even if
these methods are robust against shape distortions, noise and
occlusions, they requiremassive computations andmemory, and
thresholds tuning. As the digital boundary is assumed to be ex-
tracted from the digital image in this paper, the following meth-
ods are more appropriate.

(2) Methods based on the separating circle problem in discrete and
computational geometry [14–20] allow the recognition of digital
arcs. These algorithms are not robust since one point can forbid
the recognition of a digital arc. They need to be modified to
measure the extent of the deviation with a digital arc.

(3) Methods based on circle fitting are widely used. In computer vi-
sion [3,4,10,31–33], a circle is fitted to a set of pixels with the
least square norm. In computational metrology [5–7,12,22,23],
a circle is fitted to a set of points sampled on the boundary
of a manufactured part by a coordinate measurement machine
(CMM) generally with the least L∞ norm (or Chebyshev or Min-
Max norm) because it is recommended by the American Na-
tional Standards Institute (ANSI standard, B89.3.1-1972, R2002),
but sometimes with the least square norm, like in [34].

In this paper, a preliminary work presented in [35] is extended. Given
a part of a digital boundary, the objective is to compute a circularity
measure fulfilling some properties that will be enumerated in Section
2.2 as well as the parameters of one separating circle if it is a digital
arc or the parameters of the closest circle otherwise. The proposed
method is original because it is applied on digital boundaries like in
[13] and it links bothmethods based on the separating circle problem
and methods based on circle fitting.

We formally define a circularity measure for parts of digital
boundaries in Section 2. From one digital boundary, two sets of

points are extracted so that the circularity measure computed from
these sets is representative of the circularity of the digital boundary.
Thanks to this trick, in spite of the specificity of the digital bound-
aries, an algorithm that only uses classical tools of computational
geometry is derived in Section 3. Moreover, we show in Section 4
that the size of the two sets of points can be reduced in order to de-
crease the burden of the computation. Some experiments are done
on synthetic digital boundaries and on real-world digital images in
Section 5. The paper ends with some concluding words and future
works in Section 6.

2. Circularity measure for parts of digital boundary

2.1. Data

A binary image I is viewed as a subset of points of Z2 that are
located inside a rectangle of size M × N. A digital object O ∈ I is a
4-connected subset of Z2 without hole (Fig. 2a). Its complementary
set Ō= I\O is the so-called background. The digital boundary C (resp.
C̄) of O (resp. Ō) is defined as the 8-connected list of digital points
having at least one 4-neighbour in Ō (resp. O) (Fig. 2b). Without loss
of generality, let us suppose that C is clockwise oriented. Each point
of C is numbered according to its position in the list. The starting
point, which is arbitrarily chosen, is denoted by C0. The last point is
denoted by Cn−1, where n is equal to the number of points in C. A
connected part Cij of C is the list of digital points from the i-th point
to the j-th point of C (Fig. 2c).

A digital disk is defined as a digital object whose points are sep-
arable from the background by an Euclidean circle [13] (Fig. 2d). A
digital circle is defined as the boundary of a digital disk (Fig. 2e) and
a connected part of it is defined as a digital arc (Fig. 2f).

The goal of the following subsection is to define a measure of
how much a given part of digital boundary is far from a digital arc.

2.2. Circularity measure of a part of a digital boundary

A circularity measure for parts of digital boundaries is naturally
expected to fulfil the following properties:

(1) be robust to translation, rotation, scaling,
(2) range from 0 to 1, equal 1 for a digital arc and
(3) be intuitive. For instance, it is naturally expected to increase

as the number of sides of regular polygons increases or as the
eccentricity of ellipses decreases or as the amount of noise de-
creases. It is also expected that the measure is robust: for exam-
ple, the measure of a noisy digital circle has to be higher than
the measure of a digital triangle or a digital square, if the noise
is limited and does not affect the form.

In metrology, the circularity of an arbitrary set of points in the
plane is defined from the minimum cost of fitting a circle to the set
given a certain norm. The most often used norm is either L2 (least
square norm) or L∞ (MinMax or Chebyshev norm). Moreover, for
both norms, the quantity that is minimized is either the sum of the
radial distances or the sum of the areal distances. The four instances
of the problem of fitting a circle to a set of points have been thor-
oughly studied for a long time as it is shown in Table 1.

Fitting a circle to the points of a digital boundary with any of the
above techniques does not lead to a satisfactory measure, because
property 2 does not hold.

In the aim of fulfilling property 2, two sets of points, denoted
by S and T, are extracted from the digital boundary, so that: (i)
S ⊆ O, (ii) T ⊆ Ō and (iii) S and T are separable by a circle if and
only if C is a digital circle.
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Fig. 2. (a) A digital object is depicted with black disks. The set of squares depicts the whole (b) or a part of the (c) digital boundary. (d) A digital object that is a digital
disk. (e) A digital boundary that is a digital circle. (f) A part of a digital boundary that is a digital arc.

Table 1
Some references for the four most used instances of the problem of fitting a circle to a set of points.

Least square norm Chebyshev norm

Radial distances Mean square error [31,33,34] Minimum width annulus [5–7,9,10,12,22]
Areal distances Modified mean square error [32] Minimum area annulus [5,23]

Let S= C and T= C̄. According to the definitions introduced in
Section 2.1, the three previous criteria are obviously fulfilled.

Let the minimum signed area annulus A of centre �, inner radius
r1 and outer radius r2 be such that the outer disk contains all the
points of S and the inner disk does not contain any point of T:

Find A that minimizes (r22 − r21)

subject to

{ ∀ S ∈ S (Sx − �x)
2 + (Sy − �y)

2 � r22

∀ T ∈ T (Tx − �x)
2 + (Ty − �y)

2>r21
(1)

Notice that the problem of finding a minimum signed area annulus
enclosing a first set of points but not a second set of points is more
general than, but may be reduced to the usual problem of finding a
minimum area annulus enclosing a set of points (right bottom case
of Table 1).

The circularity measure ofS andT is the squared ratio between
r1 and r2:

circ(S,T) = r21
r22

(2)

Now, we define the circularity measure of C as the circularity mea-
sure of S and T:{
circ(C) = circ(S,T) if (circ(S,T)<1)

circ(C) = 1 otherwise
(3)

If the signed area �(r22 − r21) of A is strictly less than 0, S and T
are separable by a circle and circ(S,T)>1, but if �(r22 − r21)�0,
S and T are not separable by a circle and circ(S,T)�1 (Fig. 3).
As a consequence the circularity measure defined in Eq. (3) fulfils
property 2. Moreover, it is clear that the measure is also intuitive
and is robust to rigid transformations such that it fulfils properties
1 and 3.

3. Computation of circ(S,T)

This section focuses on the computation of circ(S,T). First, we
show that this computation may be achieved by linear programming
in a space of dimension 4. Next, we derive a simple geometric algo-
rithm working in a space of dimension 3 only.

3.1. Linear programming problem

Developing the set of constraints of Eq. (1), we get{ ∀ S ∈ S, −2aSx − 2bSy + f (Sx, Sy) + c2 �0
∀ T ∈ T, −2aTx − 2bTy + f (Tx, Ty) + c1>0

where⎧⎨
⎩
a = �x, b = �y,
c1 = (a2 + b2 − r21), c2 = (a2 + b2 − r22)
f (x, y) = x2 + y2

(4)
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Fig. 3. Two parts of two digital boundaries are depicted with gray squares. S (resp. T) is the set of black disks (resp. white disks). In (a), the minimum area annulus has
an area of 4 and the circularity measure equals 8.5

12.5 = 0.68. However in (b), it has a null area and the circularity measure equals 1, because the part of digital boundary is a
digital arc.

Instead of characterizing a circle by its centre and its radius, we
characterize a circle by its centre and the power of the origin with
respect to the circle. Thanks to this change of variables, solving
Eq. (1) is equivalent to solving a linear program with four variables
and |S|+ |T| constraints (where |.| denotes the cardinality of a set).

This kind of reformulation into a linear programming problem has
been done, for instance, in computational geometry for the smallest
enclosing circle [36] or the smallest separating circle [14], in discrete
geometry for digital circle recognition [19] and in engineering for
the quality control of manufactured parts [23].

The technique of Megiddo [37] is linear in time in the number of
constraints. Unfortunately, Megiddo's algorithm is not easy to im-
plement and the constant is large and is exponential in the dimen-
sion, which is equal to 4 here. In a space of dimension 4, Megiddo's
algorithm cannot be used in practice. That's why we propose in this
section a simple geometric algorithm that works in a space of di-
mension 3 only.

As an annulus is a pair of concentric circles that are characterized
by three parameters each, we interpret Eq. (4) in a 3D space that we
call abc-space. Indeed, c1 and c2, having the same meaning, are both
represented in the c-axis. From now on, in addition to the original
plane, called xy-plane, containing the points of Z2, we work in the
abc-space as well as in its dual space, called xyz-space.

3.2. abc-space vs xyz-space

By definition 0� r1 � r2, whereas (C2)
2 � (C1)

2 � a2 + b2, which
implies that the abc-space is a copy of R3 from which the interior
of the paraboloid of equation c= a2 + b2 has been excluded. A point
on the paraboloid maps to a circle of null radius in the xy-plane. A
point that is out of the paraboloid maps to a circle whose radius is
equal to the vertical distance between the point and the paraboloid
in the xy-plane (Fig. 4a). It is clear that two points with the same
projection in the ab-plane corresponds to two concentric circles in
the xy-plane. Minimizing the area of an annulus bounded by such
a pair of concentric circles is tantamount to minimize the vertical
distance between the two corresponding points in the abc-space.

In the xyz-space, all the points of Z2 are lifted along an ex-
tra axis (the z-axis) according to the bivariate function f . Let S′ =
{S′(S′

x, S
′
y, S

′
z)} (resp. T′ = {T ′(T ′

x, T
′
y, T

′
z)}) be the set of points of S

(resp. T) that are vertically projected onto the paraboloid of equa-
tion z= f (x, y)= x2 + y2. Any plane in the xyz-space passing through
some points of S′ or T′ cuts the paraboloid. The projection on the

a

bc

x

yz

Fig. 4. (a) A point outside the paraboloid of equation c = a2 + b2 in the abc-space
corresponds to a circle in the xy-plane and conversely. (b) A plane that cuts the
paraboloid of equation z = x2 + y2 in the xyz-space corresponds to a circle in the
xy-plane and conversely.

xy-plane of the intersection between the plane and the paraboloid
is a circle that passes through the corresponding points of S and T
(Fig. 4b). The intersection between the paraboloid and a pair of par-
allel planes projects to a pair of concentric circles on the xy-plane.
Minimizing the area of an annulus bounded by such a pair of concen-
tric circles is tantamount to minimize the vertical distance between
the two corresponding planes in the xyz-plane. This kind of trans-
formation is well known in computational geometry since [38] and
has already been used in [36] to solve the smallest enclosing circle
or in [14] to solve the smallest separating circle problem.

The understanding of the constraints is more straightforward in
the xyz-plane and that is why we will preferably work in this space
in the following subsection.

3.3. Pair of parallel planes

We have to compute a pair of parallel planes such that the upper
plane is above the points of S′ and the lower plane is below the
points ofT′ in order to solve Eq. (4) and derive a circularity measure.
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Fig. 5. S (black disks) and T (white disks) are separable by a straight line in (a), by a circle in (b) and are not separable by a circle in (c). Note that G∗ , which is the
intersection between GS (in dashed lines) and GT (in dotted lines), has respectively 0, 4 and 3 nodes in (a), (b) and (c).

Obviously, S′ and T′ may be reduced to their convex hull de-
noted by CH(S′) and CH(T′). In addition, the property of convexity
makes the next step that consists in minimizing the vertical distance
between the two parallel planes of support more efficient.

We do not detail the classical convex hull computation algorithm
that may run in O(m logm), where m = |S′| + |T′| [39,40].

An elementary way to compute the pair of parallel planes of
support minimizing their vertical distance is to compute the in-
tersection depth between the two polyhedra CH(S′) and CH(T′)
denoted by h=minHeight(CH(S′),CH(T′)). Height(CH(S′),CH(T′))
is a function that returns the distance between the two polyhedra
along the z-axis for each point of the domain of the function. Notice
that Height(CH(S′),CH(T′)) is not defined everywhere. Indeed, the
domain of this function is the intersection of the projection on the
xy-plane of CH(S′) and CH(T′), that is CH(S) ∩ CH(T).

To compute h, the brute force algorithm consists in computing
the planar graph G∗ that is the intersection between GS and GT
(Fig. 5). If |G∗| = 0, then CH(S)∩ CH(T)= ∅. In this degenerate case,
S′ and T′ are separable by a plane that is orthogonal to the xy-
plane, S and T are separable by a circle of infinite radius, that is a
straight line, so the part of digital boundary from which S and T
have been computed is a digital straight segment (Fig. 5a). If |G∗|>0,
it remains to compute the height function for each vertex of G∗ and
take the minimum.

The brute force algorithm runs in O(m2) since G∗ has at most
m2 vertices. However, it is possible to take advantage of the con-
vexity of the height function to get an algorithm in O(m logm) (see
[39, pp. 310–315] for this algorithm).

Although our algorithm is more general than a simple digital
circle test, its complexity in O(m logm) is better than the quadratic
complexity of the methods presented in [15,16,20]. These methods
cannot be efficient because they only deal with 2D projections of 3D
polyhedrons.

Once the pair of parallel planes of support are known, we have
circ(S,T)= r21/r

2
2, where r21 and r22 are derived from the coefficients

of the pair of parallel planes. From Eq. (4), it is obvious to get the
following equations: r21 = a2 + b2 − c1 and r22 = a2 + b2 − c2.

Since h is the signed area of the annulus A, if h<0, S and T are
separable by a circle and circ(S,T)>1 but if h�0, S and T are
not separable by a circle and circ(S,T)�1.

Algorithm 1 sums up the current section.

Algorithm 1. CircularityComputation(S,T).

Input: S and T, two sets of points
Output: circ(S,T)
1: ComputeS′ (resp.T′), the set of the vertical projections of the

points of S (resp. T) onto the elliptic paraboloid of equation
z = x2 + y2

2: Compute the 3D convex hull of S′ and T′ [40]
3: Compute the pair of parallel planes of support [39, pp. 310–315]
4: Compute r21 and r22 from the coefficients of the parallel planes

(a, b, c1, c2) : r21 = a2 + b2 − c1 and r22 = a2 + b2 − c2
5: return r21/r

2
2

Fig. 6. Since C15–19 is not convex (according to the clockwise orientation), the
background points that are added to T̂ are such that (i) they are 4-neighbours of
a point of C15–19 and (ii) they are located between C15–19 and the segment [s15s19].

4. Minimization of the size of S and T

In the aim of decreasing the burden of the computation of
circ(S,T), which depends on the size of S and T, we search for
Ŝ and T̂ such that Ŝ ⊆ S, T̂ ⊆ T, |Ŝ| + |T̂|< |S| + |T| and
circ(Ŝ,T̂) = circ(S,T).

4.1. Computation of Ŝ

Let us consider a part Cij of the boundary C. Since all circles are
convex, no circle can enclose the vertices of the convex hull of Cij
without enclosing all its points. So Ŝ is the set of the vertices of
the convex hull of Cij, denoted by CH(Cij). If Cij �C, the first and last

points of Cij are put in Ŝ even if they are not in CH(Cij) to make the

extraction of the points of T̂ easier.

4.2. Computation of T̂

The extraction of the points of T̂ is independently performed for
each part Ckl ∈ Cij that is lying between two consecutive points that

belongs to Ŝ, the indices of which being respectively denoted by k
and l. Let us denote by sk and sl the two end points of the part Ckl.

As the extraction algorithm depends on the convexity of Ckl, the
following definition of convexity is required:

Definition 1. As Cij is clockwise oriented, the right (resp. left) part
of CH(Cij) is the polygonal line that links Ci and Cj and that lies on
the right (resp. left) of Cij. Cij is convex (resp. concave) if and only
if there is no digital point between the polygonal line linking the
digital points of Cij and the right (resp. left) part of CH(Cij).

4.2.1. Case where Ckl is not convex
If Ckl is not convex, all the points of C̄ that are located between

the digital points of Ckl and the segment [sksl] are put in T̂ (Fig. 6).

4.2.2. Case where Ckl is convex
Without loss of generality, let us consider the segment [sksl] in

the first octant, so that the background points are located above
[sksl]. Let us consider the arithmetic description of [sksl] with a vector
�u = (a, b)T with a, b ∈ Z and gcd(a, b) = 1, such that (sl − sk) = g · �u
with g ∈ Z.
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Fig. 7. The closest Bezout point to the middle of [sksl], denoted by b1, is not sufficient:
there is a circle that separates b1 from sk and sl but encloses b2, which is another
Bezout point.

In order to have circ(Ŝ,T̂)= circ(S,T), we must keep the clos-
est background points to the outer disk containing [sksl] but not con-
taining any background point. If we assume first that the outer disk
has a infinite radius, we show that we must keep the Bezout points
of [sksl] whose definition is given below:

Definition 2. A Bezout point bq of a segment [sksl] is defined as a
point above [sksl] such that �skbq = �v + q�u with q ∈ [0, g], �v = (c,d)T

and det(�u, �v) = 1.

Lemma 1. A circle of infinite radius that encloses [sksl] but does not
enclose any Bezout point bq, does not enclose any other point above
[sksl].

This lemma and its proof may be found in other papers such as
[20]. They are the basement of the arithmetic digital straight line
recognition algorithm [27] because any lower leaning point of an 8-
connected digital straight segment in the first octant that is vertically
translated up by 1 is a Bezout point associated to this segment.

Lemma 1 shows that only Bezout points need to be taken into
consideration as points of T̂. Furthermore, it seems that only a small
part of them, located near the bisector of [sksl], is sufficient. In [20]
(Definition 1), the closest point to the middle of [sksl] is arbitrarily
chosen. Fig. 7 illustrates that only taking into account the closest
point to the middle of [sksl] is not sufficient. In the following, we
prove that at most two Bezout points have to be taken into account.

For each convex part Ckl, let us consider two extra points defined
as the points pk and pl such that pk = sk − �u and pl = sl + �u (Fig. 7). pk
and pl are background points, since [sksl] is an edge of a convex hull.
The circles that enclose [sksl] but do not enclose any background
point cannot have an infinite radius because they must not enclose
neither pk nor pl.

Let us introduce the following new definition:

Definition 3. The middle Bezout point(s) associated to the segment
[sksl] is(are) defined as:

(1) the unique Bezout point b0, if g = 1 and
(2) the two consecutive Bezout points bq−1 and bq the closest to the

middle such that q is the smallest integer for which the quantity
|2(�u · �v) + (2q − g − 1)||�u||2| is minimized.

Vector �u and integer g may be computed by applying Euclid's
algorithm to the slope of [sksl]. Vector �v is given by the Bezout's
identity that is found thanks to the extended Euclid's algorithm.
These computations are obviously made inO(log(max(|a|, |b|))). Once
g, �u and �v are known, finding themiddle Bezout points is sequentially
performed in O(g).

Fig. 8. S in (a) and Ŝ (b) (resp. T in (a) and T̂ (b)) are depicted with black disks
(resp. white disks).

Let us state the following proposition:

Proposition 1. A circle that encloses [sksl] but does not enclose neither
the middle Bezout points associated to [sksl] nor the extra points pk and
pl, does not enclose any other Bezout point.

Because of its length, the proof is given in Appendix A.
As a result, for each convex part Ckl, only two background points

at most, which are the middle Bezout point(s), must be put in T̂.
Notice that deciding if the extra point pk (resp. pl) also must be added
to T̂ is done when considering, if it exists, the previous (resp. next)
part of Cij. As an exception, if Ckl is the first (resp. last) convex part

of Cij, then the extra point pk (resp. pl) is also added to T̂.

4.3. Algorithm and complexity

The algorithm that computes Ŝ and T̂ (Algorithm 2) is given
below.

Algorithm 2. SnTComputation(Cij, Ŝ and T̂).

Input: Cij, a part of a digital boundary
Output Ŝ and T̂

1: Ŝ= T̂= ∅
2: Add si to Ŝ
3: Compute CH(Cij)
4: for all part Ckl of Cij do
5: Add sl to Ŝ
6: if Ckl is convex then
7: Add the middle Bezout point(s) of [sksl] to T̂
8: else
9: Add to T̂ all thepoints of C̄ that are located between the

digital points of Ckl and [sksl].
10: end if
11: end for
12: return Ŝ,T̂

Computing CH(Cij) (l.3) is done in linear time (using Melkman's
algorithm [42] for instance). The points of C̄ that are 4-neighbours
of a point of Ckl are computed in linear time by contour tracking.
Checking whether each part Ckl is convex or not (l.6) and performing
the appropriate processing (l.7 and l.9) is then straightforward and
in O(l − k).

Fig. 8 illustrates that |Ŝ| and |T̂| are considerably smaller than
|S| and |T|, if Cij is convex.

Actually, |Ŝ| is bounded by O(n2/3) according to known results
[41]. If Cij is convex, |T̂| is at most twice bigger than |Ŝ| according
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Fig. 9. Gauss digitization of two disks. The amount of noise that is added to the
disks according to the degradation model of [43] depends of parameter alpha. The
digital curves that we are called upon to measure are the 8-connected boundaries
of these digital objects.

to Proposition 1 and |T̂| is bounded by O(n) otherwise. Therefore
m = |Ŝ| + |T̂| is bounded by O(n2/3) in the case of convex parts
and O(n) otherwise. As circ(S,T)= circ(Ŝ,T̂) can be computed in
O(m logm), we can conclude that the circularity measure of Cij can
be computed in O(n) if Cij is convex and O(n logn) otherwise.

5. Experiments

It is clear that the proposed circularity measure fulfils the three
properties of Section 2.2. In this section, the proposed circularity
measure is probed with respect to its ability to deal with a part of a
digital boundary.

5.1. Synthetic images

Hundreds of noisy circles are generated. In order to study the
impact of the amount of noise onto circularity, we implemented a
degradation model very close to the one investigated in [43]. This
model was proposed and validated in the context of document anal-
ysis and assume that (i) the probability to flip a pixel (that is, label
“foreground” or “1” a pixel previously labelled “background” or “0”,
and conversely) depends on its distance to the nearest pixel of the
complement set and (ii) blurring may be simulated with a morpho-
logical closing.

Fig. 9 gives two examples of results of the degradation algorithm
applied to a digital disk.

Fig. 10 shows that the circularity decreases with the amount of
noise, but with sawtooth because the pixels are flipped at random.
The noisier the digital circle, the more it looks different from a digi-
tal circle. Furthermore, even with rather noisy digital circles (�=15),
the circularity is above 0.8, which approximately corresponds to the
circularity of a 7-gon. Hence, the measure is sufficiently robust to
discriminate noisy circles given by the noise model of [43] at �=15,
from k-gons where k<7, such as triangles or squares, having a cir-
cularity around 0.3 and 0.4 respectively. Note that the comparison
makes sense in spite of the difference of perimeter because the mea-
sure is size invariant.

The accuracy of the measurements on digital arcs of various
length is now investigated. Fifty noisy circles are generated (r =
30, � = 15) (Fig. 9). For each circle and for each length from 20
to approximately 180 pixels, one digital arc is randomly extracted.
The circularity measure is computed from these approximately 7500
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Fig. 10. One hundred digital circles of radius 30 are generated with more and more
noise. Parameter alpha ranging from 1 to 15 controls the amount of noise (Fig. 9).
Circularity is plotted against parameter alpha.
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Fig. 11. Fifty noisy circles were generated (r = 30, � = 15) (Fig. 9). For each circle,
for each length from 20 to approximately 180 pixels, one digital arc is randomly
extracted. The average of the circularity measure of the digital arcs (solid line) is
plotted against the length with error bars at 95%.

digital arcs. Fig. 11 shows that from 20 to 45 pixels of length (90◦),
measurements are not accurate, because the confidence range at 95%
is wide (until more than 0.1). Though, the confidence range shrinks
while the arc length increases and the measurements done on digi-
tal arcs of more than 45 pixels of length (90◦) may be consider ac-
curate. Obviously, the smallest angle for which measurements are
accurate depends on the noise and the size of the digital circles. The
smaller the �, the smaller the angle. In the special case where � = 0,
measurements are perfect for all digital arcs. Moreover, the higher
the radius, the less the noise added by the model at a given � affects
the shape, the smaller the angle.

5.2. Real-world images

We are currently working in collaborationwith geographers. They
want to perform a set of measurements that describes the shape
of pebbles sedimented in river beds. The underlying assumption is
that pebbles size and shape are determined by lithology, distance of
transport, abrasion, etc. The objective is to reduce the subjectivity
and the time spent in the field thanks to digital image analysis.

The circularity measure proposed in this paper is used in order
to study the shape of pebbles from digital images, collected in the
bed of the Progo, an Indonesian river located on Java Island near
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Fig. 12. Zoom in photos taken on the first (left) and second (right) stations.
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Fig. 13. The average of the circularity measure of the pebbles is plotted against
the distance from the source of the 12 stations where the 1300 pebbles have been
collected.

Yogyakarta. Approximately 1300 pebbles were randomly sampled
in the bed, with two photos being taken on 12 stations located at
various distances from the source. Fig. 12 shows two photos taken
near the source.

First, we detected pebbles with clustering methods in the HSV
colour-space and we extracted their digital boundary. Next, the cir-
cularity measure was computed for all the digital boundaries.

In Fig. 13, the average of the circularity measure of the pebbles is
plotted against the distance from the source of the stations where the
pebbles have been collected. Circularity is valuable for geographers
because experiments show that it increases in the first 20km, while
the pebbles get rounder, but has a complex pattern after, with no
clear trend, which raises the possibility of a substitution of macro-
scale to micro-scale shape changes downstream. Notice that Fig. 12
shows photos taken on two stations that have statistically significant
difference of circularity: the first station (Fig. 12, left) and the second
one (Fig. 12, right). Obviously, other size, form and shape parameters,
like diameter, elongation, convexity and roundness [1], are computed
in addition to circularity to provide multidimensional data of great
interest for geographers.

In the left photo of Fig. 12, two pebbles are badly detected because
they touch each other. Another example is presented on the left of
Fig. 14.

In such cases, it is possible to cut the digital boundary in two
and independently deal with the two parts of the digital boundary.
We used an algorithm that robustly decomposes a digital curve into
convex and concave parts [44]. Each part may be viewed as a part of
a pebble outline that has not been wholly retrieved. As the missing

part of each outline is small enough, the circularity measure of the
retrieved part is assumed to be very close to the one that could
have been computed on the whole digital boundary. In the example
presented in the left photo of Fig. 14, the circularity measure of the
whole digital boundary is 0.005, whereas the circularity measure of
the two parts corresponding to the two pebbles is 0.488 and 0.598
respectively, from left to right.

In the right photo of Fig. 14 is presented a pebble outline that is
corrupted with a spike. Using [44], the digital boundary is coarsely
cut before and after the spike. The digital boundary with and without
the spike has the same circularity measure that is equal to 0.511
because the spike does not affect the fitting of the minimum area
annulus.

Generally speaking, the proposed method is able to infer the cir-
cularity measure of a digital boundary from a part of it, provided that
bumps are uniformly spread around the boundary and that the part
is long enough with respect to the amplitude of the bumps. For in-
stance, in Section 5.1, it was shown that for circles of radius 30 that
are corrupted by the noise model of [43] at �=15, the measurements
done on parts of more than 90◦ may be consider accurate. We took
profit of this property in our application to cope with occlusions and
spikes.

6. Conclusion and perspectives

In this paper, a circularity measure has been defined for parts of
digital boundaries. An existing circularity measure of a set of dis-
crete points, which is sometimes used in computational metrology,
is extended to the case of parts of digital boundaries (Section 2.2).
Once the minimum area annulus, such that the outer disk contains
all the points of the part of a digital boundary and the inner disk
does not contain any background point is computed, the circularity
measure is defined as the squared ratio between the inner and outer
radii (Section 2.2).

Because we consider two sets of points, the problem we deal
with is more general than the usual problem of finding a minimum
area annulus enclosing one set of points [5–7,9,10,12,22]. The cir-
cularity measure of these two sets of points is computed thanks to
an algorithm in O(n logn) that only uses classical tools of computa-
tional geometry (Section 3). Moreover, the two sets of points may
be computed so that the algorithm is linear in time in the case of
convex digital boundaries (Section 4). The method is exact contrary
to many methods that use ad hoc heuristics [7] or meta-heuristics
like simulated annealing [10,12]. Even if it is shown that a sophis-
ticated machinery coming from linear programming can provide a
linear time algorithm (Section 3.1), its time complexity is better than
many quadratic methods based on Voronoi diagrams [5,15,16,22]
(Section 3.3).
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Fig. 14. Corrupted outlines of pebbles.

Contrary to the famous measure introduced in [21], the measure
proposed in this paper fulfils the following properties:

• it may be applied on any part of digital boundaries,
• it is robust to rigid transformations,
• it ranges from 0 to 1 and is equal to 1 for any digital circle or

arc, which means that the measurements are accurate even at low
resolution and

• it provides the parameters of a circle whose digitization is the
measured part of digital boundary if the circularity measure is 1
and the parameters of an approximating circle otherwise.

The kind of measure and algorithm proposed in this paper is general
enough to be applied in order to recognize or measure the deviation
with other quadratic shapes like parabolas. In the case of parabolas,
the extension is straightforward: it is enough to modify function f ,
so that f (x, y) equals x2 (or y2), instead of x2 + y2. The points of the
xy-plane are merely vertically projected onto a parabolic cylinder
instead of an elliptic paraboloid and Algorithm 1 does not change.

To end, it would be quite valuable to make the algorithm on-
line (without increasing its complexity as far as possible). The on-
line property would be of great interest to efficiently and robustly
decompose a digital boundary into primitives like noisy digital arcs
or pieces of noisy digital parabolas.

Acknowledgments

The authors thank the reviewers for their comments that signif-
icantly improved the paper.

Appendix A. Proof of Proposition 1

In the sequel, we only consider the case of a circle that encloses
[sksl] but neither pl nor the closest middle Bezout point to pl. The
other case is symmetric and the two cases will be put together to
conclude the proof.

Let us consider a circle passing through sk and pl. If such a circle
encloses sl but does not enclose any Bezout point, then any circle
passing through sk and intersecting [slpl] (of whatever radius) sepa-
rates sl from any Bezout point too.

The first point b that is touched by a circle passing through sk
and pl of decreasing radius is such that the angle between �bsk and
�bpl is maximized. To maximize such an angle in the range [�/2,�] is
equivalent to maximize the tangent of the angle that equals

det( �bsk, �bpl)
�bsk · �bpl

However, det( �bsk, �bpl) is constant and equal to g + 1 = h. Then, only
taking into account the denominator, we look for the integer q that
minimizes

f : Z�Z

f (q) = (−�v − q�u)(−�v + (h − q)�u)

Developing, we finally get

f (q) = q2(‖�u‖2) + q(2(�u · �v) − h(‖�u‖2)) + (‖�v‖2 − h(�u · �v))

The derivative is

f ′(q) = (2‖�u‖2)q + 2(�u · �v) − h(‖�u‖2)

Since 2‖�u‖2 �0, f is convex and has a global minimum at the value
of q for which f ′(q) is closer to 0 than for the other values of q. The
minimum is reached around q=h/2 because f ′(h/2)=2(�u · �v)�0 and
that is why we call the Bezout point bq such that q is the smallest
integer for which the quantity |2(�u · �v) + (2q − h)‖�u‖2| is minimized
(Definition 3) the middle Bezout point.

To end, the first point b that is touched by the circle of decreasing
radius and passing through sk and pl is the closest middle Bezout
point to pl according to Definition 3. Similarly, we can show that the
first point b that is touched by the circle of decreasing radius and
passing through sl and pk is the closest middle Bezout point to pk
according to Definition 3, which concludes the proof.
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